Advertisement

Cell and Tissue Research

, Volume 367, Issue 1, pp 141–154 | Cite as

Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria

  • Laura F. Fielden
  • Yilin Kang
  • Hayley J. Newton
  • Diana Stojanovski
Review

Abstract

Manipulation of host cell function by bacterial pathogens is paramount for successful invasion and creation of a niche conducive to bacterial replication. Mitochondria play a role in many important cellular processes including energy production, cellular calcium homeostasis, lipid metabolism, haeme biosynthesis, immune signalling and apoptosis. The sophisticated integration of host cell processes by the mitochondrion have seen it emerge as a key target during bacterial infection of human host cells. This review highlights the targeting and interaction of this dynamic organelle by intravacuolar bacterial pathogens and the way that the modulation of mitochondrial function might contribute to pathogenesis.

Keywords

Mitochondria Intravacuolar bacterial pathogens Protein trafficking Bacterial effector proteins Mitochondrial function 

References

  1. Abarca-Rojano E, Rosas-Medina P, Zamudio-Cortez P, Mondragon-Flores R, Sanchez-Garcia FJ (2003) Mycobacterium tuberculosis virulence correlates with mitochondrial cytochrome c release in infected macrophages. Scand J Immunol 58:419–427PubMedCrossRefGoogle Scholar
  2. Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V (2009) The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122:1906–1916PubMedCrossRefGoogle Scholar
  3. Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS Lett 487:318–322PubMedCrossRefGoogle Scholar
  4. Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498PubMedCrossRefGoogle Scholar
  5. Alix E, Mukherjee S, Roy CR (2011) Subversion of membrane transport pathways by vacuolar pathogens. J Cell Biol 195:943–952PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arnoult D, Soares F, Tattoli I, Girardin SE (2011) Mitochondria in innate immunity. EMBO Rep 12:901–910PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arzoine L, Zilberberg N, Ben-Romano R, Shoshan-Barmatz V (2009) Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J Biol Chem 284:3946–3955PubMedCrossRefGoogle Scholar
  8. Baker MJ, Palmer CS, Stojanovski D (2014) Mitochondrial protein quality control in health and disease. Br J Pharmacol 171:1870–1889PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bastidas RJ, Valdivia RH (2016) Emancipating chlamydia: advances in the genetic manipulation of a recalcitrant intracellular pathogen. Microbiol Mol Biol Rev 80:411–427PubMedCrossRefGoogle Scholar
  10. Beare PA, Larson CL, Gilk SD, Heinzen RA (2012) Two systems for targeted gene deletion in Coxiella burnetii. Appl Environ Microbiol 78:4580–4589PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brenner DJ, Steigerwalt AG, McDade JE (1979) Classification of the Legionnaires’ disease bacterium: Legionella pneumophila, genus novum, species nova, of the family Legionellaceae, familia nova. Ann Intern Med 90:656–658PubMedCrossRefGoogle Scholar
  12. Cadieux N, Parra M, Cohen H, Maric D, Morris SL, Brennan MJ (2011) Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein. Microbiology 157:793–804PubMedCrossRefGoogle Scholar
  13. Carey KL, Newton HJ, Luhrmann A, Roy CR (2011) The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog 7:e1002056PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C, Geissler A, Sickmann A, Meyer HE, Truscott KN, Guiard B, Pfanner N, Rehling P (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–829PubMedCrossRefGoogle Scholar
  15. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chacinska A, van der Laan M, Mehnert CS, Guiard B, Mick DU, Hutu DP, Truscott KN, Wiedemann N, Meisinger C, Pfanner N, Rehling P (2010) Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting. Mol Cell Biol 30:307–318PubMedCrossRefGoogle Scholar
  17. Chan NC, Lithgow T (2008) The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol Biol Cell 19:126–136PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chandran Darbari V, Waksman G (2015) Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84:603–629PubMedCrossRefGoogle Scholar
  19. Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517PubMedCrossRefGoogle Scholar
  20. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359PubMedCrossRefGoogle Scholar
  21. Creasey EA, Isberg RR (2014) Maintenance of vacuole integrity by bacterial pathogens. Curr Opin Microbiol 17:46–52PubMedCrossRefGoogle Scholar
  22. Cunha LD, Ribeiro JM, Fernandes TD, Massis LM, Khoo CA, Moffatt JH, Newton HJ, Roy CR, Zamboni DS (2015) Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nat Commun 6:10205PubMedPubMedCentralCrossRefGoogle Scholar
  23. Curran SP, Leuenberger D, Oppliger W, Koehler CM (2002) The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J 21:942–953PubMedPubMedCentralCrossRefGoogle Scholar
  24. De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P, Rizzuto R (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19:267–273PubMedCrossRefGoogle Scholar
  25. Derre I, Pypaert M, Dautry-Varsat A, Agaisse H (2007) RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection. PLoS Pathog 3:1446–1458PubMedCrossRefGoogle Scholar
  26. Diepold A, Armitage JP (2015) Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 370:20150020PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318PubMedCrossRefGoogle Scholar
  28. Dolezal P, Aili M, Tong J, Jiang JH, Marobbio CM, Lee SF, Schuelein R, Belluzzo S, Binova E, Mousnier A, Frankel G, Giannuzzi G, Palmieri F, Gabriel K, Naderer T, Hartland EL, Lithgow T (2012) Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog 8:e1002459PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eckart RA, Bisle S, Schulze-Luehrmann J, Wittmann I, Jantsch J, Schmid B, Berens C, Luhrmann A (2014) Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect Immun 82:2763–2771PubMedPubMedCentralCrossRefGoogle Scholar
  30. Escoll P, Mondino S, Rolando M, Buchrieser C (2016) Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 14:5–19PubMedCrossRefGoogle Scholar
  31. Fuchs TM, Eisenreich W, Heesemann J, Goebel W (2012) Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 36:435–462PubMedCrossRefGoogle Scholar
  32. Galan JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ganeshan K, Chawla A (2014) Metabolic regulation of immune responses. Annu Rev Immunol 32:609–634PubMedCrossRefGoogle Scholar
  34. Gillies LA, Kuwana T (2014) Apoptosis regulation at the mitochondrial outer membrane. J Cell Biochem 115:632–640PubMedCrossRefGoogle Scholar
  35. Gold V, Kudryashev M (2016) Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr Opin Struct Biol 39:1–7PubMedCrossRefGoogle Scholar
  36. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481PubMedCrossRefGoogle Scholar
  37. Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4:10.1128/microbiolspec.VMBF-0012-2015Google Scholar
  38. Guiney DG (2005) The role of host cell death in Salmonella infections. Curr Top Microbiol Immunol 289:131–150PubMedGoogle Scholar
  39. Ham H, Sreelatha A, Orth K (2011) Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol 9:635–646PubMedCrossRefGoogle Scholar
  40. Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C (2014) The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. Cell Metab 19:357–372PubMedCrossRefGoogle Scholar
  41. Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163:1123–1131PubMedPubMedCentralCrossRefGoogle Scholar
  42. Herweg JA, Rudel T (2016) Interaction of Chlamydiae with human macrophages. FEBS J 283:608–618PubMedCrossRefGoogle Scholar
  43. Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21PubMedCrossRefGoogle Scholar
  44. Hohr AI, Straub SP, Warscheid B, Becker T, Wiedemann N (2015) Assembly of beta-barrel proteins in the mitochondrial outer membrane. Biochim Biophys Acta 1853:74–88PubMedCrossRefGoogle Scholar
  45. Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331PubMedCrossRefGoogle Scholar
  46. Horwitz MA, Maxfield FR (1984) Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol 99:1936–1943PubMedCrossRefGoogle Scholar
  47. Houben EN, Korotkov KV, Bitter W (2014) Take five—type VII secretion systems of Mycobacteria. Biochim Biophys Acta 1843:1707–1716PubMedCrossRefGoogle Scholar
  48. Jamwal S, Midha MK, Verma HN, Basu A, Rao KV, Manivel V (2013) Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis. Sci Rep 3:1328PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jiang JH, Davies JK, Lithgow T, Strugnell RA, Gabriel K (2011) Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of beta-barrel protein assembly machines. Mol Microbiol 82:976–987PubMedCrossRefGoogle Scholar
  50. Jiang JH, Tong J, Gabriel K (2012a) Hijacking mitochondria: bacterial toxins that modulate mitochondrial function. IUBMB Life 64:397–401PubMedCrossRefGoogle Scholar
  51. Jiang JH, Tong J, Tan KS, Gabriel K (2012b) From evolution to pathogenesis: the link between beta-barrel assembly machineries in the outer membrane of mitochondria and gram-negative bacteria. Int J Mol Sci 13:8038–8050PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24:761–770PubMedCrossRefGoogle Scholar
  53. Keinan N, Pahima H, Ben-Hail D, Shoshan-Barmatz V (2013) The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochim Biophys Acta 1833:1745–1754PubMedCrossRefGoogle Scholar
  54. Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981–3989PubMedPubMedCentralCrossRefGoogle Scholar
  55. Klingenbeck L, Eckart RA, Berens C, Luhrmann A (2013) The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol 15:675–687PubMedCrossRefGoogle Scholar
  56. Knittler MR, Sachse K (2015) Chlamydia psittaci: update on an underestimated zoonotic agent. Pathog Dis 73:1–15PubMedGoogle Scholar
  57. Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, Kruger V, Prinz C, Meisinger C, Guiard B, Wagner R, Pfanner N, Wiedemann N (2008) Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132:1011–1024PubMedCrossRefGoogle Scholar
  58. La Rovere RM, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca signaling and Ca microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016:S0143-4160(16)30048-3Google Scholar
  59. Lazarou M, Stojanovski D, Frazier AE, Kotevski A, Dewson G, Craigen WJ, Kluck RM, Vaux DL, Ryan MT (2010) Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. J Biol Chem 285:36876–36883PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831–838PubMedCrossRefGoogle Scholar
  61. Lobet E, Letesson JJ, Arnould T (2015) Mitochondria: a target for bacteria. Biochem Pharmacol 94:173–185PubMedCrossRefGoogle Scholar
  62. Lucattini R, Likic VA, Lithgow T (2004) Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol 21:652–658PubMedCrossRefGoogle Scholar
  63. Luhrmann A, Roy CR (2007) Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 75:5282–5289PubMedPubMedCentralCrossRefGoogle Scholar
  64. Luhrmann A, Nogueira CV, Carey KL, Roy CR (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107:18997–19001PubMedPubMedCentralCrossRefGoogle Scholar
  65. Margulis L (1970) Origin of eukaryotic cells; evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the Precambrian earth. Yale University Press, New HavenGoogle Scholar
  66. Martin LA, Kennedy BE, Karten B (2016) Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 48:137–151PubMedCrossRefGoogle Scholar
  67. Matsumoto A (1981) Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J Bacteriol 145:605–612PubMedPubMedCentralGoogle Scholar
  68. Matsumoto A, Bessho H, Uehira K, Suda T (1991) Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J Electron Microsc (Tokyo) 40:356–363Google Scholar
  69. McDonough JA, Newton HJ, Klum S, Swiss R, Agaisse H, Roy CR (2013) Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. MBio 4:e00606–e00612PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mehlitz A, Karunakaran K, Herweg JA, Krohne G, van de Linde S, Rieck E, Sauer M, Rudel T (2014) The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. Cell Microbiol 16:1224–1243PubMedCrossRefGoogle Scholar
  71. Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A, Von Dollen J, Rosenberg O, Gulbahce N, Jang G, Johnson T, Jager S, Gopalakrishnan AM, Sherry J, Dunn JD, Olive A, Penn B, Shales M, Cox JS, Starnbach MN, Derre I, Valdivia R, Krogan NJ, Engel J (2015) Global mapping of the inc-human interactome reveals that retromer restricts chlamydia infection. Cell Host Microbe 18:109–121PubMedPubMedCentralCrossRefGoogle Scholar
  72. Moffatt JH, Newton P, Newton HJ (2015) Coxiella burnetii: turning hostility into a home. Cell Microbiol 17:621–631PubMedCrossRefGoogle Scholar
  73. Morlino G, Barreiro O, Baixauli F, Robles-Valero J, Gonzalez-Granado JM, Villa-Bellosta R, Cuenca J, Sanchez-Sorzano CO, Veiga E, Martin-Cofreces NB, Sanchez-Madrid F (2014) Miro-1 links mitochondria and microtubule Dynein motors to control lymphocyte migration and polarity. Mol Cell Biol 34:1412–1426PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mossmann D, Meisinger C, Vogtle FN (2012) Processing of mitochondrial presequences. Biochim Biophys Acta 1819:1098–1106PubMedCrossRefGoogle Scholar
  75. Mueller KE, Wolf K, Fields KA (2016) Gene deletion by fluorescence-reported allelic exchange mutagenesis in Chlamydia trachomatis. MBio 7:e01817–01815PubMedPubMedCentralCrossRefGoogle Scholar
  76. Muller A, Gunther D, Brinkmann V, Hurwitz R, Meyer TF, Rudel T (2000) Targeting of the pro-apoptotic VDAC-like porin (PorB) of Neisseria gonorrhoeae to mitochondria of infected cells. EMBO J 19:5332–5343PubMedPubMedCentralCrossRefGoogle Scholar
  77. Muller A, Rassow J, Grimm J, Machuy N, Meyer TF, Rudel T (2002) VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways. EMBO J 21:1916–1929PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nagai H, Kubori T (2011) Type IVB secretion systems of legionella and other gram-negative bacteria. Front Microbiol 2:136PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, Roy CR (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102:826–831PubMedCrossRefGoogle Scholar
  80. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749PubMedCrossRefGoogle Scholar
  81. Niu H, Yamaguchi M, Rikihisa Y (2008) Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell Microbiol 10:593–605PubMedCrossRefGoogle Scholar
  82. Niu H, Kozjak-Pavlovic V, Rudel T, Rikihisa Y (2010) Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog 6:e1000774PubMedPubMedCentralCrossRefGoogle Scholar
  83. Noriea NF, Clark TR, Hackstadt T (2015) Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. MBio 6:e00323-15PubMedPubMedCentralCrossRefGoogle Scholar
  84. Omsland A, Heinzen RA (2011) Life on the outside: the rescue of Coxiella burnetii from its host cell. Annu Rev Microbiol 65:111–128PubMedCrossRefGoogle Scholar
  85. Palucci I, Camassa S, Cascioferro A, Sali M, Anoosheh S, Zumbo A, Minerva M, Iantomasi R, De Maio F, Di Sante G, Ria F, Sanguinetti M, Palu G, Brennan MJ, Manganelli R, Delogu G (2016) PE_PGRS33 contributes to Mycobacterium tuberculosis entry in macrophages through interaction with TLR2. PLoS One 11:e0150800PubMedPubMedCentralCrossRefGoogle Scholar
  86. Park JS, Tamayo MH, Gonzalez-Juarrero M, Orme IM, Ordway DJ (2006) Virulent clinical isolates of Mycobacterium tuberculosis grow rapidly and induce cellular necrosis but minimal apoptosis in murine macrophages. J Leukoc Biol 79:80–86PubMedCrossRefGoogle Scholar
  87. Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531PubMedCrossRefGoogle Scholar
  88. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82PubMedCrossRefGoogle Scholar
  89. Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A (2016) Type III secretion: building and operating a remarkable nanomachine. Trends Biochem Sci 41:175–189PubMedCrossRefGoogle Scholar
  90. Raturi A, Simmen T (2013) Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta 1833:213–224PubMedCrossRefGoogle Scholar
  91. Rehling P, Model K, Brandner K, Kovermann P, Sickmann A, Meyer HE, Kuhlbrandt W, Wagner R, Truscott KN, Pfanner N (2003) Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:1747–1751PubMedCrossRefGoogle Scholar
  92. Reis K, Fransson A, Aspenstrom P (2009) The Miro GTPases: at the heart of the mitochondrial transport machinery. FEBS Lett 583:1391–1398PubMedCrossRefGoogle Scholar
  93. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747PubMedCrossRefGoogle Scholar
  94. Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:e377PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rudel T, Kepp O, Kozjak-Pavlovic V (2010) Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat Rev Microbiol 8:693–705PubMedCrossRefGoogle Scholar
  96. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526PubMedCrossRefGoogle Scholar
  97. Schlesinger LS (1996) Entry of Mycobacterium tuberculosis into mononuclear phagocytes. Curr Top Microbiol Immunol 215:71–96PubMedGoogle Scholar
  98. Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 11:655–667PubMedCrossRefGoogle Scholar
  99. Schulz C, Lytovchenko O, Melin J, Chacinska A, Guiard B, Neumann P, Ficner R, Jahn O, Schmidt B, Rehling P (2011) Tim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex. J Cell Biol 195:643–656PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sinzel M, Tan T, Wendling P, Kalbacher H, Ozbalci C, Chelius X, Westermann B, Brugger B, Rapaport D, Dimmer KS (2016) Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep 17:965–981PubMedCrossRefGoogle Scholar
  101. Song J, Tamura Y, Yoshihisa T, Endo T (2014) A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. EMBO Rep 15:670–677PubMedPubMedCentralGoogle Scholar
  102. Stavru F, Palmer AE, Wang C, Youle RJ, Cossart P (2013) Atypical mitochondrial fission upon bacterial infection. Proc Natl Acad Sci U S A 110:16003–16008PubMedPubMedCentralCrossRefGoogle Scholar
  103. Stojanovski D, Bohnert M, Pfanner N, van der Laan M (2012) Mechanisms of protein sorting in mitochondria. Cold Spring Harb Perspect Biol 4:a011320PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sukumaran SK, Fu NY, Tin CB, Wan KF, Lee SS, Yu VC (2010) A soluble form of the pilus protein FimA targets the VDAC-hexokinase complex at mitochondria to suppress host cell apoptosis. Mol Cell 37:768–783PubMedCrossRefGoogle Scholar
  105. Suzuki M, Danilchanka O, Mekalanos JJ (2014) Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe 16:581–591PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632PubMedCrossRefGoogle Scholar
  107. Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24:44–52PubMedCrossRefGoogle Scholar
  108. van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N (2006) A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr Biol 16:2271–2276PubMedCrossRefGoogle Scholar
  109. van der Laan M, Meinecke M, Dudek J, Hutu DP, Lind M, Perschil I, Guiard B, Wagner R, Pfanner N, Rehling P (2007) Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat Cell Biol 9:1152–1159PubMedCrossRefGoogle Scholar
  110. van der Laan M, Hutu DP, Rehling P (2010) On the mechanism of preprotein import by the mitochondrial presequence translocase. Biochim Biophys Acta 1803:732–739PubMedCrossRefGoogle Scholar
  111. Vance JE (2014) MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 1841:595–609PubMedCrossRefGoogle Scholar
  112. Vance JE (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16:1–18PubMedCrossRefGoogle Scholar
  113. Vaux DL (2011) Apoptogenic factors released from mitochondria. Biochim Biophys Acta 1813:546–550PubMedCrossRefGoogle Scholar
  114. Vazquez CL, Colombo MI (2010) Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ 17:421–438PubMedCrossRefGoogle Scholar
  115. van Vliet AR, Verfaillie T, Agostinis P (2014) New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253–2262PubMedCrossRefGoogle Scholar
  116. Voth DE, Howe D, Beare PA, Vogel JP, Unsworth N, Samuel JE, Heinzen RA (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191:4232–4242PubMedPubMedCentralCrossRefGoogle Scholar
  117. Voth DE, Beare PA, Howe D, Sharma UM, Samoilis G, Cockrell DC, Omsland A, Heinzen RA (2011) The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 193:1493–1503PubMedPubMedCentralCrossRefGoogle Scholar
  118. Walther DM, Papic D, Bos MP, Tommassen J, Rapaport D (2009a) Signals in bacterial beta-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc Natl Acad Sci U S A 106:2531–2536PubMedPubMedCentralCrossRefGoogle Scholar
  119. Walther DM, Rapaport D, Tommassen J (2009b) Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 66:2789–2804PubMedPubMedCentralCrossRefGoogle Scholar
  120. Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM (2006) Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell 21:123–133PubMedCrossRefGoogle Scholar
  121. Weisthal S, Keinan N, Ben-Hail D, Arif T, Shoshan-Barmatz V (2014) Ca(2+)-mediated regulation of VDAC1 expression levels is associated with cell death induction. Biochim Biophys Acta 1843:2270–2281PubMedCrossRefGoogle Scholar
  122. Wenz LS, Opalinski L, Schuler MH, Ellenrieder L, Ieva R, Bottinger L, Qiu J, van der Laan M, Wiedemann N, Guiard B, Pfanner N, Becker T (2014) The presequence pathway is involved in protein sorting to the mitochondrial outer membrane. EMBO Rep 15:678–685PubMedPubMedCentralGoogle Scholar
  123. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011a) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480PubMedPubMedCentralCrossRefGoogle Scholar
  124. West AP, Shadel GS, Ghosh S (2011b) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wiedemann N, Pfanner N, Ryan MT (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J 20:951–960PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wiedemann N, Kozjak V, Chacinska A, Schonfisch B, Rospert S, Ryan MT, Pfanner N, Meisinger C (2003) Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–571PubMedCrossRefGoogle Scholar
  127. Wiedemann N, van der Laan M, Hutu DP, Rehling P, Pfanner N (2007) Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J Cell Biol 179:1115–1122PubMedPubMedCentralCrossRefGoogle Scholar
  128. Winchell CG, Steele S, Kawula T, Voth DE (2016) Dining in: intracellular bacterial pathogen interplay with autophagy. Curr Opin Microbiol 29:9–14PubMedCrossRefGoogle Scholar
  129. Wyllie S, Ashley RH, Longbottom D, Herring AJ (1998) The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect Immun 66:5202–5207PubMedPubMedCentralGoogle Scholar
  130. Zhao Y, Shao F (2015) The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 265:85–102PubMedCrossRefGoogle Scholar
  131. Zhou Y, Zhu Y (2015) Diversity of bacterial manipulation of the host ubiquitin pathways. Cell Microbiol 17:26–34PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia
  2. 2.Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleAustralia

Personalised recommendations