Advertisement

Cell and Tissue Research

, Volume 366, Issue 3, pp 733–746 | Cite as

MicroRNA-34b/c inhibits aldosterone-induced vascular smooth muscle cell calcification via a SATB2/Runx2 pathway

  • Jianbing Hao
  • Lei Zhang
  • Guangting Cong
  • Liansheng Ren
  • Lirong HaoEmail author
Regular Article

Abstract

Increasing evidence shows that aldosterone and specific microRNAs (miRs) contribute to vascular smooth muscle cell (VSMC) calcification. In this study, we aim to explore the mechanistic links between miR-34b/c and aldosterone in VSMC calcification. VSMC calcification models were established both in vitro and in vivo. First, the levels of aldosterone, miR-34b/c and special AT-rich sequence-binding protein 2 (SATB2) were measured. Then, miR-34b/c mimics or inhibitors were transfected into VSMCs to evaluate the function of miR-34b/c. Luciferase reporter assays were used to demonstrate whether SATB2 was a direct target of miR-34b/c. Aldosterone and SATB2 were found to be markedly upregulated during VSMC calcification, whereas miR-34b/c expression was downregulated. Treatment with the mineralocorticoid receptor (MR) antagonist eplerenone inhibited VSMC calcification. In aldosterone-induced VSMC calcification, miR-34b/c levels were downregulated and SATB2 protein was upregulated. Furthermore, miR-34b/c overexpression alleviated aldosterone-induced VSMC calcification as well as inhibited the expression of SATB2 protein, whereas miR-34b/c inhibition markedly enhanced VSMC calcification and upregulated SATB2 protein. In addition, luciferase reporter assays showed that SATB2 is a direct target of miR-34b/c in VSMCs. Overexpression of SATB2 induced Runx2 overproduction and VSMC calcification. Therefore, miR-34b/c participates in aldosterone-induced VSMC calcification via a SATB2/Runx2 pathway. As miR-34b/c appears to be a negative regulator, it has potential as a therapeutic target of VSMC calcification.

Keywords

miR-34b/c Aldosterone Vascular smooth muscle cell Vascular calcification SATB2 

Notes

Acknowledgment

Our studies were performed in the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences.

Compliance with ethical standards

Conflict of interest

None declared.

Funding

This work was supported by the China Doctoral Fund project of the Education Ministry (20122307110011), the Chinese Hospital Association project (CHABP201623) and the First Affiliated Hospital of Harbin Medical University (2016Y004).

References

  1. Al-Aly Z (2008) Vascular calcification in uremia: what is new and where are we going? Adv Chronic Kidney Dis 15:413–419CrossRefPubMedGoogle Scholar
  2. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH (2012) miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beck GR Jr, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A 97:8352–8357CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernardo BC, Gao XM, Winbanks CE, Boey EJ, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du XJ, Lin RC, McMullen JR (2012) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 109:17615–17620CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A, Horrevoets AJ, Didier N, Girmatsion Z, Biliczki P, Ehrlich JR, Katus HA, Müller OJ, Potente M, Zeiher AM, Hermeking H, Dimmeler S (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110CrossRefPubMedGoogle Scholar
  7. Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, McDonald JM, Chen Y (2008) Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem 283:15319–15327CrossRefPubMedPubMedCentralGoogle Scholar
  8. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, Poirier F, Lacolley P, Zannad F, Rossignol P, López-Andrés N (2013) Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol 33:67–75CrossRefPubMedGoogle Scholar
  9. Chen NX, Duan D, O’Neill KD, Wolisi GO, Koczman JJ, Laclair R, Moe SM (2006) The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int 70:1046–1053CrossRefPubMedGoogle Scholar
  10. Ciceri P, Volpi E, Brenna I, Arnaboldi L, Neri L, Brancaccio D, Cozzolino M (2012) Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation. Nephrol Dial Transplant 27(1):122–127CrossRefPubMedGoogle Scholar
  11. De Solís AJ, González-Pacheco FR, Deudero JJ, Neria F, Calabia O, Fernández-Sánchez R, Caramelo C (2008) Aldosterone increases in vitro vascular calcification. Nefrologia 28:224–225PubMedGoogle Scholar
  12. Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I, Karsenty G, Grosschedl R (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986CrossRefPubMedGoogle Scholar
  14. Engelse MA, Neele JM, Bronckers AL, Pannekoek H, de Vries CJ (2001) Vascular calcification: expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesis. Cardiovasc Res 52:281–289CrossRefPubMedGoogle Scholar
  15. Fan F, Sun A, Zhao H, Liu X, Zhang W, Jin X, Wang C, Ma X, Shen C, Zou Y, Hu K, Ge J (2013) MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2. Curr Pharm Des 19:4865–4873CrossRefPubMedGoogle Scholar
  16. Garfinkel A, Tintut Y, Petrasek D, Boström K, Demer LL (2004) Pattern formation by vascular mesenchymal cells. Proc Natl Acad Sci U S A 101:9247–9250CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gong Y, Qian Y, Yang F, Wang H, Yu Y (2014) Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo. Eur J Oral Sci 122:190–197CrossRefPubMedGoogle Scholar
  18. Hené RJ, Boer P, Koomans HA, Mees EJ (1982) Plasma aldosterone concen-trations in chronic renal disease. Kidney Int 21:98–101CrossRefPubMedGoogle Scholar
  19. Hofmann Bowman MA, McNally EM (2012) Genetic pathways of vascular calcification. Trends Cardiovasc Med 22:93–98CrossRefPubMedGoogle Scholar
  20. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110CrossRefPubMedGoogle Scholar
  21. Ito T, Yagi S, Yamakuchi M (2010) MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398:735–740CrossRefPubMedGoogle Scholar
  22. Jaffe IZ, Tintut Y, Newfell BG, Demer LL, Mendelsohn ME (2007) Mineralocorticoid receptor activation promotes vascular cell calcification. Arterioscler Thromb Vasc Biol 27:799–805CrossRefPubMedGoogle Scholar
  23. Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 99:1044–1059CrossRefPubMedGoogle Scholar
  24. Koleganova N, Piecha G, Ritz E, Schirmacher P, Müller A, Meyer HP, Gross ML (2009) Arterial calcification in patients with chronic kidney disease. Nephrol Dial Transplant 24:2488–2496CrossRefPubMedGoogle Scholar
  25. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764CrossRefPubMedGoogle Scholar
  26. London GM, Guérin AP, Marchais SJ, Métivier F, Pannier B, Adda H (2003) Arterial media calcification in end stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 18:1731–1740CrossRefPubMedGoogle Scholar
  27. McRobb L, Handelsman DJ, Heather AK (2009) Androgen-induced progression of arterial calcification in apolipoprotein E-null mice is uncoupled from plaque growth and lipid levels. Endocrinology 150:841–848CrossRefPubMedGoogle Scholar
  28. Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, van Leeuwen FN, Touyz RM (2010) Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 56(3):453–462CrossRefPubMedGoogle Scholar
  29. Nakano-Kurimoto R, Ikeda K, Uraoka M, Nakagawa Y, Yutaka K, Koide M, Takahashi T, Matoba S, Yamada H, Okigaki M, Matsubara H (2009) Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol Heart Circ Physiol 297:H1673–H1684CrossRefPubMedGoogle Scholar
  30. Newfell BG, Iyer LK, Mohammad NN, McGraw AP, Ehsan A, Rosano G, Huang PL, Mendelsohn ME, Jaffe IZ (2011) Aldosterone regulates vascular gene transcription via oxidative stress-dependent and -independent pathways. Arterioscler Thromb Vasc Biol 31:1871–1880CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nitta K, Akiba T, Nihei H (2003) Aldosterone blockade and vascular calcification in hemodialysis patients. Am J Med 115:250CrossRefPubMedGoogle Scholar
  32. O’Neill WC, Sigrist MK, McIntyre CW (2010) Plasma pyrophosphate and vascular calcification in chronic kidney disease. Nephrol Dial Transplant 25:187–191CrossRefPubMedGoogle Scholar
  33. Osako MK, Nakagami H, Koibuchi N, Shimizu H, Nakagami F, Koriyama H, Shimamura M, Miyake T, Rakugi H, Morishita R (2010) Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res 107:466–475CrossRefPubMedGoogle Scholar
  34. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771CrossRefPubMedGoogle Scholar
  35. Price PA, Roublick AM, Williamson MK (2006) Artery calcification in uremic rats is increased by a low protein diet and prevented by treatment with ibandronate. Kidney Int 70:1577–1583CrossRefPubMedGoogle Scholar
  36. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36CrossRefPubMedGoogle Scholar
  37. Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) β-Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009CrossRefPubMedGoogle Scholar
  38. Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, Gupta A, Hiorns M, Donald AE, Deanfield J, Rees L, Shanahan CM (2008) Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118:1748–1757CrossRefPubMedGoogle Scholar
  39. Song Z, Li G (2010) Role of specific MicroRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury. J Cardiovasc Transl Res 3:246–250CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sun Y, Byon CH, Yuan K, Chen J, Mao X, Heath JM, Javed A, Zhang K, Anderson PG, Chen Y (2012) Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification. Circ Res 111:543–552CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494CrossRefPubMedGoogle Scholar
  42. Voelkl J, Alesutan I, Leibrock CB, Quintanilla-Martinez L, Kuhn V, Feger M, Mia S, Ahmed MS, Rosenblatt KP, Kuro-O M, Lang F (2013) Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice. J Clin Invest 123:812–822PubMedPubMedCentralGoogle Scholar
  43. Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197:509–521CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wu SY, Yu YR, Cai Y, Jia LX, Wang X, Xiao CS, Tang CS, Qi YF (2012) Endogenous aldosterone is involved in vascular calcification in rat. Exp Biol Med (Maywood) 237:31–37CrossRefGoogle Scholar
  45. Zavaczki E, Jeney V, Agarwal A, Zarjou A, Oros M, Katkó M, Varga Z, Balla G, Balla J (2011) Hydrogen sulfide inhibits the calcification and osteoblastic differentiation of vascular smooth muscle cells. Kidney Int 80(7):731–739CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhang J, Tu Q, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P, Chen J (2011) Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A 17:1767–1776CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong W, Tang C, Wang X (2011) Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and in vivo. Kidney Int 79:1071–1079CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jianbing Hao
    • 1
  • Lei Zhang
    • 1
  • Guangting Cong
    • 1
  • Liansheng Ren
    • 1
  • Lirong Hao
    • 1
    Email author
  1. 1.Department of Nephropathy and HemodialysisThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations