Advertisement

Cell and Tissue Research

, Volume 365, Issue 3, pp 607–619 | Cite as

Fibroblast activation in cancer: when seed fertilizes soil

  • Sanya-Eduarda Kuzet
  • Cedric GaggioliEmail author
Review

Abstract

In solid cancers, activated fibroblasts acquire the capacity to provide fertile soil for tumor progression. Specifically, cancer-associated fibroblasts (CAFs) establish a strong relationship with cancer cells. This provides advantages to both cell types: whereas cancer cells initiate and sustain CAF activation, CAFs support cancer cell growth, motility and invasion. This results in tumor progression, metastasis and chemoresistance. Numerous studies have detailed the mechanisms involved in fibroblast activation and cancer progression, some of which are reviewed in this article. Cancer cells and CAFs are “partners in crime”, and their interaction is supported by inflammation. An understanding of the enemy, the cancer cell population and its “allies” should provide novel opportunities for targeted-drug development.

Graphical Abstract

Molecular mechanism of fibroblast activation. a Normal fibroblasts are the most common cell type in the extracellular matrix and are responsible for the synthesis of collagens and fibrilar proteins. Under normal conditions, fibroblasts maintain tissue homeostasis and contribute to proper cell communication and function. Fibroblasts can be activated by a diverse set of factors secreted from cancer or immune cells. Not only growth factors such as TGF-β, PDGF, HGF and FGF but also interleukins, metalloproteinases and reactive oxygen species can promote activation. Likewise, transcriptional factors such as NF-κB and HSF-1 play an important role, as do the gene family of metalloproteinase inhibitors, Timp and the NF-κB subunit, p62. Interestingly, fibroblasts themselves can stimulate cancer cells to support activation further. b Once activated, fibroblasts undergo a phenotype switch and become cancer-associated fibroblasts (CAFs) expressing various markers such as α-SMA, FSP1, vimentin and periostatin. c Recently, the LIF/GP130/IL6-R pathway has been identified as a signaling cascade involved in fibroblast activation. Upon LIF stimulation, JAK is phosphorylated and further activates STAT3, a transcriptional factor that is then translocated into the nucleus where it promotes the transcription of genes responsible for cell growth, differentiation, proliferation and apoptosis. Ruxolitinib can inhibit JAK and prevent STAT3 activation. Further on, the maintenance of JAK activation is supported by epigenetical changes and post-translational modifications. Once pSTAT3 is acetylated by histon acetyltransferase, p300, it leads to the loss of expression of SHP-1, which is a negative regulator of the JAK/STAT pathway. Silencing of SHP-1 steers the constitutive activation of JAK and STAT3

Keywords

Carcinoma-associated fibroblasts Tumor microenvironment Inflammation Cancer 

Notes

Acknowledgments

We thank Dr. G. Meneguzzi and Dr. S.E. Acton for critical reading of the manuscript.

References

  1. Albrengues J, Bourget I, Pons C, Butet V, Hofman P, Tartare-Deckert S, Feral CC, Meneguzzi G, Gaggioli C (2014) LIF mediates proinvasive activation of stromal fibroblasts in cancer. Cell Rep 7:1664–1678PubMedCrossRefGoogle Scholar
  2. Albrengues J, Bertero T, Grasset E, Bonan S, Maiel M, Bourget I, Philippe C, Herraiz Serrano C, Benamar S, Croce O, Sanz-Moreno V, Meneguzzi G, Feral CC, Cristofari G, Gaggioli C (2015) Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun 6:10204PubMedPubMedCentralCrossRefGoogle Scholar
  3. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, Hanby AM, Speirs V, Sahai E, Calvo F, Isacke CM (2016) Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun 7:10305PubMedPubMedCentralCrossRefGoogle Scholar
  4. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550PubMedCrossRefGoogle Scholar
  5. Ben-Neriah Y, Karin M (2011)Inflammation meets cancer, with NF-κB as the matchmaker.Nat Immunol 12:715–723PubMedCrossRefGoogle Scholar
  6. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedPubMedCentralCrossRefGoogle Scholar
  7. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925PubMedCrossRefGoogle Scholar
  8. Bronzert DA, Pantazis P, Antoniades HN, Kasid A, Davidson N, Dickson RB, Lippman ME (1987) Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci U S A 84:5763–5767PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119:629–641PubMedCrossRefGoogle Scholar
  10. Calvo F, Sahai E (2011) Cell communication networks in cancer invasion. Curr Opin Cell Biol 23:621–629PubMedCrossRefGoogle Scholar
  11. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15:637–646PubMedCrossRefGoogle Scholar
  12. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510PubMedCrossRefGoogle Scholar
  13. Costa A, Scholer-Dahirel A, Mechta-Grigoriou F (2014) The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol 25:23–32PubMedCrossRefGoogle Scholar
  14. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J, Ferrara N (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34PubMedCrossRefGoogle Scholar
  15. De Wever O, Nguyen Q-D, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18:1016–1018PubMedGoogle Scholar
  16. Dees C, Tomcik M, Palumbo-Zerr K, Distler A, Beyer C, Lang V, Horn A, Zerr P, Zwerina J, Gelse K, Distler O, Schett G, Distler JH (2012) JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis Rheum 64:3006–3015PubMedCrossRefGoogle Scholar
  17. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316PubMedPubMedCentralCrossRefGoogle Scholar
  18. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–584PubMedCrossRefGoogle Scholar
  19. Desmoulière A (1995) Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int 19:471–476PubMedCrossRefGoogle Scholar
  20. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183PubMedCrossRefGoogle Scholar
  21. Dvorak HF (1986) Tumors: wounds that do not heal. N Engl J Med 315:1650–1659PubMedCrossRefGoogle Scholar
  22. Eke I, Cordes N (2015) Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 31:65–75PubMedCrossRefGoogle Scholar
  23. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264:169–184PubMedCrossRefGoogle Scholar
  24. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRefGoogle Scholar
  25. Fedorenko IV, Paraiso KHT, Smalley KSM (2011) Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol 82:201–209PubMedPubMedCentralCrossRefGoogle Scholar
  26. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703PubMedPubMedCentralCrossRefGoogle Scholar
  27. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane. Am J Pathol 130:393–400PubMedPubMedCentralGoogle Scholar
  28. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400PubMedCrossRefGoogle Scholar
  29. García-Tuñón I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M (2008) OSM, LIF, its receptors, and its relationship with the malignance in human breast carcinoma (in situ and in infiltrative). Cancer Invest 26:222–229CrossRefPubMedGoogle Scholar
  30. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198PubMedGoogle Scholar
  31. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58PubMedCrossRefGoogle Scholar
  32. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  34. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  35. Hannink M, Donoghue DJ (1989) Structure and function of platelet-derived growth factor (PDGF) and related proteins. Biochim Biophys Acta 989:1–10PubMedGoogle Scholar
  36. Harrison L, Blackwell K (2004) Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist 9 (Suppl 5):31–40PubMedCrossRefGoogle Scholar
  37. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, Maruvka YE, Ji F, Bhang H-EC, Krishnamurthy Radhakrishna V, Siravegna G, Hu H, Raoof S, Lockerman E, Kalsy A, Lee D, Keating CL, Ruddy DA, Damon LJ, Crystal AS, Costa C, Piotrowska Z, Bardelli A, Iafrate AJ, Sadreyev RI, Stegmeier F, Getz G, Sequist LV, Faber AC, Engelman JA (2016) Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 22:262–269PubMedPubMedCentralCrossRefGoogle Scholar
  38. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8:1439–1452PubMedCrossRefGoogle Scholar
  39. Hazlehurst LA, Dalton WS (2001) Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metastasis Rev 20:43–50PubMedCrossRefGoogle Scholar
  40. Heldin C-H, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316PubMedGoogle Scholar
  41. Heldin C-H, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813PubMedCrossRefGoogle Scholar
  42. Hirata E, Girotti MR, Viros A, Hooper S, Spencer-Dene B, Matsuda M, Larkin J, Marais R, Sahai E (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27:574–588PubMedPubMedCentralCrossRefGoogle Scholar
  43. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O’Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17:860–866PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ignotz RA, Massagué J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345PubMedGoogle Scholar
  45. Iijima J, Konno K, Itano N (2011) Inflammatory alterations of the extracellular matrix in the tumor microenvironment. Cancers 3:3189–3205PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433PubMedCrossRefGoogle Scholar
  47. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827Google Scholar
  48. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression.Nat Rev Immunol 5:749–759PubMedCrossRefGoogle Scholar
  49. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049PubMedPubMedCentralCrossRefGoogle Scholar
  50. Khokha R, Murthy A, Weiss A (2013) Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 13:649–665PubMedCrossRefGoogle Scholar
  51. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A 107:20009–20014PubMedPubMedCentralCrossRefGoogle Scholar
  52. Koliaraki V, Pasparakis M, Kollias G (2015) IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med 212:2235–2251PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lazarides E, Balzer DR (1978) Specificity of desmin to avian and mammalian muscle cells. Cell 14:429–438PubMedCrossRefGoogle Scholar
  54. Leask A, Abraham DJ (2004) TGF-β signaling and the fibrotic response. FASEB J 18:816–827PubMedCrossRefGoogle Scholar
  55. Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411:375–379PubMedCrossRefGoogle Scholar
  56. Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, Puzanov I, Hauschild A, Robert C, Algazi A, Mortier L, Tawbi H, Wilhelm T, Zimmer L, Switzky J, Swann S, Martin AM, Guckert M, Goodman V, Streit M, Kirkwood JM, Schadendorf D (2012) Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol 13:1087–1095PubMedCrossRefGoogle Scholar
  57. Madsen CD, Pedersen JT, Venning FA, Singh LB, Moeendarbary E, Charras G, Cox TR, Sahai E, Erler JT (2015) Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep 16:1394–1408PubMedPubMedCentralCrossRefGoogle Scholar
  58. Maina F, Klein R (1999) Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2:213–217PubMedCrossRefGoogle Scholar
  59. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr H-A, Delaloye J-F, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89CrossRefGoogle Scholar
  60. Matsumoto K, Matsumoto K, Nakamura T, Kramer RH (1994) Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269:31807–31813PubMedGoogle Scholar
  61. Maurer G, Tarkowski B, Baccarini M (2011) Raf kinases in cancer-roles and therapeutic opportunities. Oncogene 30:3477–3488PubMedCrossRefGoogle Scholar
  62. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674PubMedCrossRefGoogle Scholar
  63. Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89:31–39PubMedCrossRefGoogle Scholar
  65. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83:7297–7301PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mørk C, Deurs B van, Petersen OW (1990) Regulation of vimentin expression in cultured human mammary epithelial cells. Differentiation 43:146–156Google Scholar
  67. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849PubMedCrossRefGoogle Scholar
  68. Multhaupt HAB, Leitinger B, Gullberg D, Couchman JR (2016) Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 97:28–40PubMedCrossRefGoogle Scholar
  69. Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T (1997) Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 57:3305–3313PubMedGoogle Scholar
  70. Navab R, Strumpf D, To C, Pasko E, Kim KS, Park CJ, Hai J, Liu J, Jonkman J, Barczyk M, Bandarchi B, Wang YH, Venkat K, Ibrahimov E, Pham NA, Ng C, Radulovich N, Zhu CQ, Pintilie M, Wang D, Lu A, Jurisica I, Walker GC, Gullberg D, Tsao MS (2015) Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene 35:1899–1908PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nissen LJ, Cao R, Hedlund E-M, Wang Z, Zhao X, Wetterskog D, Funa K, Bråkenhielm E, Cao Y (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117:2766–2777PubMedPubMedCentralCrossRefGoogle Scholar
  72. Öhlund D, Elyada E, Tuveson D (2014) Fibroblast heterogeneity in the cancer wound. J Exp Med 211:1503–1523PubMedPubMedCentralCrossRefGoogle Scholar
  73. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461PubMedPubMedCentralCrossRefGoogle Scholar
  74. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium.Cancer Res 59:5002–5011PubMedGoogle Scholar
  75. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348PubMedCrossRefGoogle Scholar
  76. Ostman A (2012) The tumor microenvironment controls drug sensitivity. Nat Med 18:1332–1334PubMedCrossRefGoogle Scholar
  77. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, De Jesus-Acosta A, Sharma P, Heidari P, Mahmood U, Chin L, Moses HL, Weaver VM, Maitra A, Allison JP, LeBleu VS, Kalluri R (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734PubMedPubMedCentralCrossRefGoogle Scholar
  78. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573CrossRefGoogle Scholar
  79. Pallangyo CK, Ziegler PK, Greten FR (2015) IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J Exp Med 212:2253–2266PubMedPubMedCentralCrossRefGoogle Scholar
  80. Paraiso KHT, Smalley KSM (2013) Fibroblast-mediated drug resistance in cancer. Biochem Pharmacol 85:1033–1041PubMedCrossRefGoogle Scholar
  81. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274:36505–36512PubMedCrossRefGoogle Scholar
  82. Paul D, Lipton A, Klinger I (1971) Serum factor requirements of normal and simian virus 40-transformed 3T3 mouse fibroblasts. Proc Natl Acad Sci U S A 68:645–648PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466PubMedCrossRefGoogle Scholar
  84. Pietras K, Sjöblom T, Rubin K, Heldin C-H, Östman A (2003a) PDGF receptors as cancer drug targets. Cancer Cell 3:439–443PubMedCrossRefGoogle Scholar
  85. Pietras K, Sjöblom T, Rubin K, Heldin C-H, Östman A (2003b) PDGF receptors as cancer drug targets. Cancer Cell 3:439–443PubMedCrossRefGoogle Scholar
  86. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solit DB (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390PubMedPubMedCentralCrossRefGoogle Scholar
  87. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab M, Albino AP, Old LJ (1993) Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53:3327–3335PubMedGoogle Scholar
  89. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, Westphalen CB, Kitajewski J, Fernandez-Barrena MG, Fernandez-Zapico ME, Iacobuzio-Donahue C, Olive KP, Stanger BZ (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747PubMedPubMedCentralCrossRefGoogle Scholar
  90. Roberts AB, McCune BK, Sporn MB (1992) TGF-β: regulation of extracellular matrix. Kidney Int 41:557–559PubMedCrossRefGoogle Scholar
  91. Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Féral CC, Cook M, Larkin J, Marais R, Meneguzzi G, Sahai E, Marshall CJ (2011) ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20:229–245PubMedCrossRefGoogle Scholar
  92. Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L, Lindquist S (2014) The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158:564–578Google Scholar
  93. Shao ZM, Nguyen M, Barsky SH (2000) Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 19:4337–4345PubMedCrossRefGoogle Scholar
  94. Shaw TJ, Martin P (2009) Wound repair at a glance. J Cell Sci 122:3209–3213PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD, Shao YW, Aiken A, Waterhouse PD, Karamboulas C, Hess FM, Ohtsuka T, Okada Y, Ailles L, Ludwig A, Wrana JL, Kislinger T, Khokha R (2014) Loss of the timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol 16:889–901PubMedCrossRefGoogle Scholar
  97. Shimokado K, Raines EW, Madtes DK, Barrett TB, Benditt EP, Ross R (1985) A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43:277–286PubMedCrossRefGoogle Scholar
  98. Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ (2001) The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128:3117–3131PubMedPubMedCentralGoogle Scholar
  99. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A (2012) Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714PubMedPubMedCentralCrossRefGoogle Scholar
  100. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504PubMedPubMedCentralCrossRefGoogle Scholar
  101. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405PubMedCrossRefGoogle Scholar
  102. Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, Müller GA (2000) Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int 57:1521–1538PubMedCrossRefGoogle Scholar
  103. Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5:1640–1646PubMedCrossRefGoogle Scholar
  104. Taddei ML, Giannoni E, Comito G, Chiarugi P (2013) Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 341:80–96PubMedCrossRefGoogle Scholar
  105. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedCrossRefGoogle Scholar
  106. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890PubMedCrossRefGoogle Scholar
  107. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363PubMedCrossRefGoogle Scholar
  108. Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N, Thompson JC, Caserta E, Wang H, Chong JL, Naidu S, Wei G, Sharma SM, Stephens JA, Fernandez SA, Gurcan MN, Weinstein MB, Barsky SH, Yee L, Rosol TJ, Stromberg PC, Robinson ML, Pepin F, Hallett M, Park M, Ostrowski MC, Leone G (2009) Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461:1084–1091PubMedPubMedCentralCrossRefGoogle Scholar
  109. Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA, Metallo CM, Diaz-Meco MT, Moscat J (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26:121–135PubMedPubMedCentralCrossRefGoogle Scholar
  110. Visser KE de, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37Google Scholar
  111. Vukovic V, Tannock IF (1997) Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan. Br J Cancer 75:1167–1172PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S, Yano S (2009) Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 15:6630–6638PubMedCrossRefGoogle Scholar
  113. Wartenberg M, Ling FC, Müschen M, Klein F, Acker H, Gassmann M, Petrat K, Pütz V, Hescheler J, Sauer H (2003) Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J 17:503–505PubMedGoogle Scholar
  114. Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, Wymant J, Jones AT, Kynaston H, Mason MD, Tabi Z, Clayton A (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34:290–302PubMedCrossRefGoogle Scholar
  115. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410PubMedCrossRefGoogle Scholar
  116. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904PubMedCrossRefGoogle Scholar
  119. Wu X, Chen X, Zhou Q, Li P, Yu B, Li J, Qu Y, Yan J, Yu Y, Yan M, Zhu Z, Liu B, Su L (2013) Hepatocyte growth factor activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer. Cancer Lett 335:128–135PubMedCrossRefGoogle Scholar
  120. Wysoczynski M, Miekus K, Jankowski K, Wanzeck J, Bertolone S, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2007) Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Res 67:2131–2140PubMedCrossRefGoogle Scholar
  121. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D, Nannini-Pepe M, Kotkow K, Marsters JC, Rubin LL, Sauvage FJ de (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410Google Scholar
  122. Zeltz C, Gullberg D (2016) The integrin–collagen connection—a glue for tissue repair? J Cell Sci 129:1284–1284PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN)University of Nice Sophia Antipolis, Medical SchoolNiceFrance

Personalised recommendations