Cell and Tissue Research

, Volume 365, Issue 3, pp 521–538 | Cite as

Contribution of collagen adhesion receptors to tissue fibrosis

  • Nuno Miranda Coelho
  • Christopher A. McCulloch


Fibrosis is the result of a wound-healing response that fails to restore normal tissue structure function. One of the critical hallmarks of fibrosis is disrupted collagen remodeling. In tissue homeostasis, the production, deposition and organization of collagen is balanced by the degradation and remodeling of collagen within the existing matrix. After injury or chronic infection, tissues initiate a wound-healing response that is intended to create a new ECM for restoring tissue structure and function. If the wound-healing response is dysregulated or if the tissue injury or infection is severe or long-lasting, collagen deposition exceeds collagen degradation and the tissue repair process leads to fibrosis. The fibrotic repair response is extraordinarily complex and involves a wide spectrum of cells, signaling pathways and regulatory systems, some of which can be readily disrupted and thereby contribute to fibrotic lesions. The dysregulated collagen remodeling is a common end-point of all fibrotic disorders, and one of the rate-limiting steps of collagen remodeling is the binding of cells to collagen fibrils by specific cell adhesion receptors. In this review, we describe how the expression and function of collagen adhesion receptors contribute to collagen processing events that contribute to tissue fibrosis.

Graphical abstract

Balance between collagen remodeling in health and disease


Fibrosis Collagen Fibroblast Adhesion Receptors Collagen Remodeling 



CAM is supported by a Canada Research Chair in Matrix Dynamics (Tier 1) and by CIHR Operating Grant MOP 416228.


  1. Abair TD, Bulus N, Borza C, Sundaramoorthy M, Zent R, Pozzi A (2008) Functional analysis of the cytoplasmic domain of the integrin {alpha}1 subunit in endothelial cells. Blood 112:3242–3254PubMedPubMedCentralCrossRefGoogle Scholar
  2. Afonso PV, McCann CP, Kapnick SM, Parent CA (2013) Discoidin domain receptor 2 regulates neutrophil chemotaxis in 3D collagen matrices. Blood 121:1644–1650PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ala-aho R, Kahari VM (2005) Collagenases in cancer. Biochimie 87:273–286PubMedCrossRefGoogle Scholar
  4. Arnaout MA, Goodman SL, Xiong JP (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19:495–507PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arora PD, Manolson MF, Downey GP, Sodek J, McCulloch CA (2000) A novel model system for characterization of phagosomal maturation, acidification, and intracellular collagen degradation in fibroblasts. J Biol Chem 275:35432–35441PubMedCrossRefGoogle Scholar
  6. Arora PD, Conti MA, Ravid S, Sacks DB, Kapus A, Adelstein RS, Bresnick AR, McCulloch CA (2008) Rap1 activation in collagen phagocytosis is dependent on nonmuscle myosin II-A. Mol Biol Cell 19:5032–5046PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arora PD, Wang Y, Bresnick A, Dawson J, Janmey PA, McCulloch CA (2013) Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions. Mol Biol Cell 24:734–747PubMedPubMedCentralCrossRefGoogle Scholar
  8. Avivi-Green C, Singal M, Vogel WF (2006) Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 174:420–427PubMedCrossRefGoogle Scholar
  9. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280PubMedCrossRefGoogle Scholar
  10. Barczyk MM, Lu N, Popova SN, Bolstad AI, Gullberg D (2013) α11β1 integrin-mediated MMP-13-dependent collagen lattice contraction by fibroblasts: Evidence for integrin-coordinated collagen proteolysis. J Cell Physiol 228:1108–1119PubMedCrossRefGoogle Scholar
  11. Barrow AD, Raynal N, Andersen TL, Slatter DA, Bihan D, Pugh N, Cella M, Kim T, Rho J, Negishi-Koga T, Delaisse JM, Takayanagi H, Lorenzo J, Colonna M, Farndale RW, Choi Y, Trowsdale J (2011) OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121:3505–3516PubMedPubMedCentralCrossRefGoogle Scholar
  12. Berg RA, Schwartz ML, Crystal RG (1980) Regulation of the production of secretory proteins: intracellular degradation of newly synthesized “defective” collagen. Proc Natl Acad Sci U S A 77:4746–4750PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bienkowski RS, Baum BJ, Crystal RG (1978) Fibroblasts degrade newly synthesised collagen within the cell before secretion. Nature 276:413–416PubMedCrossRefGoogle Scholar
  14. Blissett AR, Garbellini D, Calomeni EP, Mihai C, Elton TS, Agarwal G (2009) Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2. J Mol Biol 385:902–911PubMedCrossRefGoogle Scholar
  15. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801PubMedPubMedCentralCrossRefGoogle Scholar
  16. Borza CM, Pozzi A (2014) Discoidin domain receptors in disease. Matrix Biol 34:185–192PubMedCrossRefGoogle Scholar
  17. Borza CM, Chen X, Mathew S, Mont S, Sanders CR, Zent R, Pozzi A (2010) Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J Biol Chem 285:40114–40124PubMedPubMedCentralCrossRefGoogle Scholar
  18. Borza CM, Su Y, Chen X, Yu L, Mont S, Chetyrkin S, Voziyan P, Hudson BG, Billings PC, Jo H, Bennett JS, Degrado WF, Eckes B, Zent R, Pozzi A (2012) Inhibition of integrin alpha2beta1 ameliorates glomerular injury. J Am Soc Nephrol 23:1027–1038PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bradshaw AD (2015) The role of secreted protein acidic and rich in cysteine (SPARC) in cardiac repair and fibrosis: Does expression of SPARC by macrophages influence outcomes? J Mol Cell CardiolGoogle Scholar
  20. Brennan M, Cox D (2014) The therapeutic potential of I-domain integrins. Adv Exp Med Biol 819:157–178PubMedCrossRefGoogle Scholar
  21. Bundesmann MM, Wagner TE, Chow YH, Altemeier WA, Steinbach T, Schnapp LM (2012) Role of urokinase plasminogen activator receptor-associated protein in mouse lung. Am J Respir Cell Mol Biol 46:233–239PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carafoli F, Mayer MC, Shiraishi K, Pecheva MA, Chan LY, Nan R, Leitinger B, Hohenester E (2012) Structure of the discoidin domain receptor 1 extracellular region bound to an inhibitory Fab fragment reveals features important for signaling. Structure 20:688–697PubMedCrossRefGoogle Scholar
  23. Carracedo S, Lu N, Popova SN, Jonsson R, Eckes B, Gullberg D (2010) The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J Biol Chem 285:10434–10445PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carver W, Molano I, Reaves TA, Borg TK, Terracio L (1995) Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J Cell Physiol 165:425–437PubMedCrossRefGoogle Scholar
  25. Chen CZ, Raghunath M (2009) Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art. Fibrogenesis Tissue Repair 2:7PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen X, Moeckel G, Morrow JD, Cosgrove D, Harris RC, Fogo AB, Zent R, Pozzi A (2004) Lack of integrin alpha1beta1 leads to severe glomerulosclerosis after glomerular injury. Am J Pathol 165:617–630PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen X, Abair TD, Ibanez MR, Su Y, Frey MR, Dise RS, Polk DB, Singh AB, Harris RC, Zent R, Pozzi A (2007) Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation. Mol Cell Biol 27:3313–3326PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen X, Whiting C, Borza C, Hu W, Mont S, Bulus N, Zhang MZ, Harris RC, Zent R, Pozzi A (2010) Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression. Mol Cell Biol 30:3048–3058PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen X, Wang H, Liao HJ, Hu W, Gewin L, Mernaugh G, Zhang S, Zhang ZY, Vega-Montoto L, Vanacore RM, Fassler R, Zent R, Pozzi A (2014) Integrin-mediated type II TGF-beta receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. J Clin Invest 124:3295–3310PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen C, Deng J, Yu X, Wu F, Men K, Yang Q, Zhu Y, Liu X, Jiang Q (2016) Identification of novel inhibitors of DDR1 against idiopathic pulmonary fibrosis by integrative transcriptome meta-analysis, computational and experimental screening. Mol BioSyst 12:1540–1551PubMedCrossRefGoogle Scholar
  31. Cook HT, Khan SB, Allen A, Bhangal G, Smith J, Lobb RR, Pusey CD (2002) Treatment with an antibody to VLA-1 integrin reduces glomerular and tubulointerstitial scarring in a rat model of crescentic glomerulonephritis. Am J Pathol 161:1265–1272PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  33. DeLeon-Pennell KY (2016) May the fibrosis be with you: Is discoidin domain receptor 2 the receptor we have been looking for? J Mol Cell Cardiol 91:201–203PubMedCrossRefGoogle Scholar
  34. Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host Responses in Tissue Repair and Fibrosis. Annu Rev Pathol 8:241–276PubMedCrossRefGoogle Scholar
  35. Dumin JA, Dickeson SK, Stricker TP, Bhattacharyya-Pakrasi M, Roby JD, Santoro SA, Parks WC (2001) Pro-collagenase-1 (Matrix Metalloproteinase-1) Binds the α2β1 Integrin upon Release from Keratinocytes Migrating on Type I Collagen. J Biol Chem 276:29368–29374PubMedCrossRefGoogle Scholar
  36. Engelholm LH, Ingvarsen S, Jurgensen HJ, Hillig T, Madsen DH, Nielsen BS, Behrendt N (2009) The collagen receptor uPARAP/Endo180. Front Biosci (Landmark Ed) 14:2103–2114CrossRefGoogle Scholar
  37. Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11:233–244PubMedCrossRefGoogle Scholar
  38. Fang M, Yuan J, Peng C, Li Y (2014) Collagen as a double-edged sword in tumor progression. Tumour Biol 35:2871–2882PubMedCrossRefGoogle Scholar
  39. Farndale RW (2006) Collagen-induced platelet activation. Blood Cell Mol Dis 36:162–165CrossRefGoogle Scholar
  40. Ferri N, Carragher NO, Raines EW (2004) Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol 164:1575–1585PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fields GB (2013) Interstitial collagen catabolism. J Biol Chem 288:8785–8793PubMedPubMedCentralCrossRefGoogle Scholar
  42. Flamant M, Placier S, Rodenas A, Curat CA, Vogel WF, Chatziantoniou C, Dussaule J-C (2006) Discoidin Domain Receptor 1 Null Mice Are Protected against Hypertension-Induced Renal Disease. J Am Soc Nephrol 17:3374–3381PubMedCrossRefGoogle Scholar
  43. Flynn LA, Blissett AR, Calomeni EP, Agarwal G (2010) Inhibition of collagen fibrillogenesis by cells expressing soluble extracellular domains of DDR1 and DDR2. J Mol Biol 395:533–543PubMedCrossRefGoogle Scholar
  44. Franco C, Hou G, Ahmad PJ, Fu EYK, Koh L, Vogel WF, Bendeck MP (2008) Discoidin Domain Receptor 1 (Ddr1) Deletion Decreases Atherosclerosis by Accelerating Matrix Accumulation and Reducing Inflammation in Low-Density Lipoprotein Receptor–Deficient Mice. Circ Res 102:1202–1211PubMedCrossRefGoogle Scholar
  45. Franco C, Ahmad PJ, Hou G, Wong E, Bendeck MP (2010) Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Circ Res 106:1775–1783PubMedCrossRefGoogle Scholar
  46. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200PubMedPubMedCentralCrossRefGoogle Scholar
  47. Friedman SL, Sheppard D, Duffield JS, Violette S (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5:167sr161CrossRefGoogle Scholar
  48. Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C, Kumarasiri M, Mahasenan KV, Mobashery S, Huang P, Agarwal G, Fridman R (2013) Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J Biol Chem 288:7430–7437PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gardner H (2014) Integrin alpha1beta1. Adv Exp Med Biol 819:21–39PubMedCrossRefGoogle Scholar
  50. Gardner H, Broberg A, Pozzi A, Laato M, Heino J (1999) Absence of integrin alpha1beta1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J Cell Sci 112(Pt 3):263–272PubMedGoogle Scholar
  51. Geiger B, Yamada KM (2011) Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 3Google Scholar
  52. Gelse K, Poschl E, Aigner T (2003) Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546PubMedCrossRefGoogle Scholar
  53. Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193–203PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gotwals PJ, Chi-Rosso G, Lindner V, Yang J, Ling L, Fawell SE, Koteliansky VE (1996) The alpha1beta1 integrin is expressed during neointima formation in rat arteries and mediates collagen matrix reorganization. J Clin Invest 97:2469–2477PubMedPubMedCentralCrossRefGoogle Scholar
  55. Grenache DG, Zhang Z, Wells LE, Santoro SA, Davidson JM, Zutter MM (2007) Wound Healing in the α2β1 Integrin-Deficient Mouse: Altered Keratinocyte Biology and Dysregulated Matrix Metalloproteinase Expression. J Investig Dermatol 127:455–466PubMedCrossRefGoogle Scholar
  56. Gross O, Girgert R, Beirowski B, Kretzler M, Kang HG, Kruegel J, Miosge N, Busse AC, Segerer S, Vogel WF, Muller GA, Weber M (2010) Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biol 29:346–356PubMedCrossRefGoogle Scholar
  57. Guerrot D, Kerroch M, Placier S, Vandermeersch S, Trivin C, Mael-Ainin M, Chatziantoniou C, Dussaule JC (2011) Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. Am J Pathol 179:83–91PubMedPubMedCentralCrossRefGoogle Scholar
  58. Handorf AM, Zhou Y, Halanski MA, Li WJ (2015) Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  59. Heino J (2014) Cellular signaling by collagen-binding integrins. Adv Exp Med Biol 819:143–155PubMedCrossRefGoogle Scholar
  60. Hinz B (2015) The extracellular matrix and transforming growth factor-beta1: Tale of a strained relationship. Matrix Biol 47:54–65PubMedCrossRefGoogle Scholar
  61. Hinz B (2016) Myofibroblasts. Exp Eye Res 142:56–70PubMedCrossRefGoogle Scholar
  62. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180:1340–1355PubMedPubMedCentralCrossRefGoogle Scholar
  63. Honoré S, Kovacic H, Vé P, Briand C, Rognoni J-B (2003) α2β1-integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): implication of NADPH oxidase-dependent production of ROS. Exp Cell Res 285:59–71PubMedCrossRefGoogle Scholar
  64. Hou G, Vogel W, Bendeck MP (2001) The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 107:727–735PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hou G, Vogel WF, Bendeck MP (2002) Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression. Circ Res 90:1147–1149PubMedCrossRefGoogle Scholar
  66. Huang Y, Arora P, McCulloch CA, Vogel WF (2009) The collagen receptor DDR1 regulates cell spreading and motility by associating with myosin IIA. J Cell Sci 122:1637–1646PubMedCrossRefGoogle Scholar
  67. Hulmes DJS (2008) Collagen Diversity, Synthesis and Assembly. In: Fratzl P (ed) Collagen: Structure and Mechanics. Springer, Boston, pp 15–47CrossRefGoogle Scholar
  68. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hynes RO (2002) Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  70. Ivarsson M, McWhirter A, Black CM, Rubin K (1993) Impaired regulation of collagen pro-alpha 1(I) mRNA and change in pattern of collagen-binding integrins on scleroderma fibroblasts. J Invest Dermatol 101:216–221PubMedCrossRefGoogle Scholar
  71. Ivaska J, Reunanen H, Westermarck J, Koivisto L, Kahari VM, Heino J (1999) Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol 147:401–416PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jin Z, Luo R, Piao X (2009) GPR56 and its related diseases. Prog Mol Biol Transl Sci 89:1–13PubMedCrossRefGoogle Scholar
  73. Jokinen J, Dadu E, Nykvist P, Kapyla J, White DJ, Ivaska J, Vehvilainen P, Reunanen H, Larjava H, Hakkinen L, Heino J (2004) Integrin-mediated cell adhesion to type I collagen fibrils. J Biol Chem 279:31956–31963PubMedCrossRefGoogle Scholar
  74. Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kagami S, Urushihara M, Kondo S, Hayashi T, Yamano H, Loster K, Vossmeyer D, Reutter W, Kuroda Y (2002) Effects of anti-alpha1 integrin subunit antibody on anti-Thy-1 glomerulonephritis. Lab Invest 82:1219–1227PubMedCrossRefGoogle Scholar
  76. Kavvadas P, Dussaule JC (2011) Chatziantoniou C (2014) Searching novel diagnostic markers and targets for therapy of CKD. Kidney Int Suppl 4:53–57CrossRefGoogle Scholar
  77. Kerroch M, Guerrot D, Vandermeersch S, Placier S, Mesnard L, Jouanneau C, Rondeau E, Ronco P, Boffa JJ, Chatziantoniou C, Dussaule JC (2012) Genetic inhibition of discoidin domain receptor 1 protects mice against crescentic glomerulonephritis. FASEB J 26:4079–4091PubMedCrossRefGoogle Scholar
  78. Kerroch M, Alfieri C, Dorison A, Boffa J-J, Chatziantoniou C, Dussaule J-C (2016) Protective effects of genetic inhibition of Discoidin Domain Receptor 1 in experimental renal disease. Sci Rep 6:21262PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kim N, Takami M, Rho J, Josien R, Choi Y (2002) A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195:201–209PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kisseleva T, Brenner DA (2008) Mechanisms of Fibrogenesis. Exp Biol Med 233:109–122CrossRefGoogle Scholar
  81. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763PubMedCrossRefGoogle Scholar
  82. Kothiwale S, Borza CM, Lowe EW Jr, Pozzi A, Meiler J (2015) Discoidin domain receptor 1 (DDR1) kinase as target for structure-based drug discovery. Drug Discov Today 20:255–261PubMedCrossRefGoogle Scholar
  83. Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Manes S, Bruckner K, Goergen JL, Lemke G, Yancopoulos G, Angel P, Martinez C, Klein R (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2:446–452PubMedPubMedCentralCrossRefGoogle Scholar
  84. Langholz O, Rockel D, Mauch C, Kozlowska E, Bank I, Krieg T, Eckes B (1995) Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J Cell Biol 131:1903–1915PubMedCrossRefGoogle Scholar
  85. Lebbink RJ, de Ruiter T, Adelmeijer J, Brenkman AB, van Helvoort JM, Koch M, Farndale RW, Lisman T, Sonnenberg A, Lenting PJ, Meyaard L (2006) Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med 203:1419–1425PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lebbink RJ, Raynal N, de Ruiter T, Bihan DG, Farndale RW, Meyaard L (2009) Identification of multiple potent binding sites for human leukocyte associated Ig-like receptor LAIR on collagens II and III. Matrix Biol 28:202–210PubMedCrossRefGoogle Scholar
  87. Lee W, Sodek J, McCulloch CA (1996) Role of integrins in regulation of collagen phagocytosis by human fibroblasts. J Cell Physiol 168:695–704PubMedCrossRefGoogle Scholar
  88. Lee H, Overall CM, McCulloch CA, Sodek J (2006) A critical role for the membrane-type 1 matrix metalloproteinase in collagen phagocytosis. Mol Biol Cell 17:4812–4826PubMedPubMedCentralCrossRefGoogle Scholar
  89. Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290PubMedCrossRefGoogle Scholar
  90. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell 139:891–906PubMedPubMedCentralCrossRefGoogle Scholar
  91. Li S, Van Den Diepstraten C, D’Souza SJ, Chan BM, Pickering JG (2003) Vascular smooth muscle cells orchestrate the assembly of type I collagen via alpha2beta1 integrin, RhoA, and fibronectin polymerization. Am J Pathol 163:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  92. Li Y, Lu X, Ren X, Ding K (2015) Small molecule discoidin domain receptor kinase inhibitors and potential medical applications. J Med Chem 58:3287–3301PubMedCrossRefGoogle Scholar
  93. Lopez JI, Mouw JK, Weaver VM (2008) Biomechanical regulation of cell orientation and fate. Oncogene 27:6981–6993PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lopez-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, Isacke CM, Emson CL, Turner SM, Shankland SJ, Eddy AA (2012) Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 23:236–251PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3Google Scholar
  96. Lundgren-Åkerlund E, Aszòdi A (2014) Integrin α10β1: A Collagen Receptor Critical in Skeletal Development. In: Gullberg D (ed) I Domain Integrins. Springer, Dordrecht, pp 61–71Google Scholar
  97. Luo R, Jeong SJ, Yang A, Wen M, Saslowsky DE, Lencer WI, Arac D, Piao X (2014) Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation. PLoS ONE 9, e100043PubMedPubMedCentralCrossRefGoogle Scholar
  98. Madsen DH, Jurgensen HJ, Ingvarsen S, Melander MC, Vainer B, Egerod KL, Hald A, Rono B, Madsen CA, Bugge TH, Engelholm LH, Behrendt N (2012) Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis. J Pathol 227:94–105PubMedCrossRefGoogle Scholar
  99. Malhotra V, Erlmann P (2011) Protein export at the ER: loading big collagens into COPII carriers. EMBO J 30:3475–3480PubMedPubMedCentralCrossRefGoogle Scholar
  100. Malhotra V, Erlmann P (2015) The Pathway of Collagen Secretion. Annu Rev Cell Dev Biol 31:109–124PubMedCrossRefGoogle Scholar
  101. Malik R, Lelkes PI, Cukierman E (2015) Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol 33:230–236PubMedPubMedCentralCrossRefGoogle Scholar
  102. Manon-Jensen T, Kjeld NG, Karsdal MA (2016) Collagen-mediated hemostasis. J Thromb Haemost 14:438–448PubMedCrossRefGoogle Scholar
  103. Margadant C, Sonnenberg A (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11:97–105PubMedPubMedCentralCrossRefGoogle Scholar
  104. Marshall RP, Simpson JK, Lukey PT (2013) Strategies for biomarker discovery in fibrotic disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1832:1079–1087CrossRefGoogle Scholar
  105. Matsuyama W, Mitsuyama H, Watanabe M, Shirahama Y, Higashimoto I, Osame M, Arimura K (2005a) Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol 33:565–573PubMedCrossRefGoogle Scholar
  106. Matsuyama W, Watanabe M, Shirahama Y, Oonakahara K, Higashimoto I, Yoshimura T, Osame M, Arimura K (2005b) Activation of discoidin domain receptor 1 on CD14-positive bronchoalveolar lavage fluid cells induces chemokine production in idiopathic pulmonary fibrosis. J Immunol 174:6490–6498PubMedCrossRefGoogle Scholar
  107. McCulloch CA, Coelho NM (2015) Collagen Processing and its Role in Fibrosis. In: Dixon IMC, Wigle JT (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?, vol 13. Advances in Biochemistry in Health and Disease. Springer, Switzerland, pp 261-278Google Scholar
  108. McCulloch CA, Downey GP, El-Gabalawy H (2006) Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat Rev Drug Discov 5:864–876PubMedCrossRefGoogle Scholar
  109. McKleroy W, Lee TH, Atabai K (2013) Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 304:L709–721PubMedPubMedCentralCrossRefGoogle Scholar
  110. McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289:1202–1206PubMedCrossRefGoogle Scholar
  111. Melander MC, Jurgensen HJ, Madsen DH, Engelholm LH, Behrendt N (2015) The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review). Int J Oncol 47:1177–1188PubMedPubMedCentralGoogle Scholar
  112. Melcher AH, Chan J (1981) Phagocytosis and digestion of collagen by gingival fibroblasts in vivo: a study of serial sections. J Ultrastruct Res 77:1–36PubMedCrossRefGoogle Scholar
  113. Merck E, Gaillard C, Gorman DM, Montero-Julian F, Durand I, Zurawski SM, Menetrier-Caux C, Carra G, Lebecque S, Trinchieri G, Bates EEM (2004) OSCAR is an FcRγ-associated receptor that is expressed by myeloid cells and is involved in antigen presentation and activation of human dendritic cells. Blood 104:1386–1395PubMedCrossRefGoogle Scholar
  114. Meyaard L (2008) The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol 83:799–803PubMedCrossRefGoogle Scholar
  115. Meyaard L (2010) LAIR and collagens in immune regulation. Immunol Lett 128:26–28PubMedCrossRefGoogle Scholar
  116. Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5:S5PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mienaltowski MJ, Birk DE (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29PubMedCrossRefGoogle Scholar
  118. Moroi M, Jung SM (2004) Platelet glycoprotein VI: its structure and function. Thromb Res 114:221–233PubMedCrossRefGoogle Scholar
  119. Muller AK, Meyer M, Werner S (2012) The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol 23:963–970PubMedCrossRefGoogle Scholar
  120. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43PubMedCrossRefGoogle Scholar
  121. Nanthakumar CB, Hatley RJ, Lemma S, Gauldie J, Marshall RP, Macdonald SJ (2015) Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov 14:693–720PubMedCrossRefGoogle Scholar
  122. Nuyttens BP, Thijs T, Deckmyn H, Broos K (2011) Platelet adhesion to collagen. Thromb Res 127(Suppl 2):S26–S29PubMedCrossRefGoogle Scholar
  123. Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL (2001) DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 108:1369–1378PubMedPubMedCentralCrossRefGoogle Scholar
  124. Olaso E, Labrador JP, Wang L, Ikeda K, Eng FJ, Klein R, Lovett DH, Lin HC, Friedman SL (2002) Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J Biol Chem 277:3606–3613PubMedCrossRefGoogle Scholar
  125. Olaso E, Arteta B, Benedicto A, Crende O, Friedman SL (2011a) Loss of Discoidin Domain Receptor 2 Promotes Hepatic Fibrosis after Chronic Carbon Tetrachloride through Altered Paracrine Interactions between Hepatic Stellate Cells and Liver-Associated Macrophages. Am J Pathol 179:2894–2904PubMedPubMedCentralCrossRefGoogle Scholar
  126. Olaso E, Lin HC, Wang LH, Friedman SL (2011b) Impaired dermal wound healing in discoidin domain receptor 2-deficient mice associated with defective extracellular matrix remodeling. Fibrogenesis Tissue Repair 4:5PubMedPubMedCentralCrossRefGoogle Scholar
  127. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233PubMedPubMedCentralCrossRefGoogle Scholar
  128. Parks WC (2007a) What is the alpha2beta1 integrin doing in the epidermis? J Invest Dermatol 127:264–266PubMedCrossRefGoogle Scholar
  129. Parks WC (2007b) What Is the α2β1 Integrin Doing in the Epidermis? J Investig Dermatol 127:264–266PubMedCrossRefGoogle Scholar
  130. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254PubMedCrossRefGoogle Scholar
  131. Perez-Tamayo R (1978) Pathology of collagen degradation. A review. Am J Pathol 92:508–566PubMedPubMedCentralGoogle Scholar
  132. Peters MA, Wendholt D, Strietholt S, Frank S, Pundt N, Korb-Pap A, Joosten LAB, van den Berg WB, Kollias G, Eckes B, Pap T (2012) The loss of α2β1 integrin suppresses joint inflammation and cartilage destruction in mouse models of rheumatoid arthritis. Arthritis Rheum 64:1359–1368PubMedCrossRefGoogle Scholar
  133. Phillip JM, Aifuwa I, Walston J, Wirtz D (2015) The Mechanobiology of Aging. Annu Rev Biomed Eng 17:113–141PubMedPubMedCentralCrossRefGoogle Scholar
  134. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Descarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036PubMedCrossRefGoogle Scholar
  135. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC (1997) The Activity of Collagenase-1 Is Required for Keratinocyte Migration on a Type I Collagen Matrix. J Cell Biol 137:1445–1457PubMedPubMedCentralCrossRefGoogle Scholar
  136. Popova SN, Barczyk M, Tiger CF, Beertsen W, Zigrino P, Aszodi A, Miosge N, Forsberg E, Gullberg D (2007) Alpha11 beta1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Mol Cell Biol 27:4306–4316PubMedPubMedCentralCrossRefGoogle Scholar
  137. Postlethwaite AE, Shigemitsu H, Kanangat S (2004) Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol 16:733–738PubMedCrossRefGoogle Scholar
  138. Pozzi A, Wary KK, Giancotti FG, Gardner HA (1998) Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J Cell Biol 142:587–594PubMedPubMedCentralCrossRefGoogle Scholar
  139. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA (2000) Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci U S A 97:2202–2207PubMedPubMedCentralCrossRefGoogle Scholar
  140. Racine-Samson L, Rockey DC, Bissell DM (1997) The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem 272:30911–30917PubMedCrossRefGoogle Scholar
  141. Ravanti L, Heino J, Lopez-Otin C, Kahari VM (1999) Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem 274:2446–2455PubMedCrossRefGoogle Scholar
  142. Reunanen N, Foschi M, Han J, Kahari VM (2000) Activation of extracellular signal-regulated kinase 1/2 inhibits type I collagen expression by human skin fibroblasts. J Biol Chem 275:34634–34639PubMedCrossRefGoogle Scholar
  143. Riikonen T, Westermarck J, Koivisto L, Broberg A, Kahari VM, Heino J (1995) Integrin alpha 2 beta 1 is a positive regulator of collagenase (MMP-1) and collagen alpha 1(I) gene expression. J Biol Chem 270:13548–13552PubMedCrossRefGoogle Scholar
  144. Roberts ME, Magowan L, Hall IP, Johnson SR (2011) Discoidin domain receptor 1 regulates bronchial epithelial repair and matrix metalloproteinase production. Eur Respir J 37:1482–1493PubMedCrossRefGoogle Scholar
  145. Rodemann HP, Rennekampff H-O (2011) Functional Diversity of Fibroblasts. In: Mueller MM, Fusenig EN (eds) Tumor-Associated Fibroblasts and their Matrix: Tumor Stroma. Springer, Dordrecht, pp 23–36CrossRefGoogle Scholar
  146. Ronziere MC, Aubert-Foucher E, Gouttenoire J, Bernaud J, Herbage D, Mallein-Gerin F (2005) Integrin alpha1beta1 mediates collagen induction of MMP-13 expression in MC615 chondrocytes. Biochim Biophys Acta 1746:55–64PubMedCrossRefGoogle Scholar
  147. Rossi P, Karsenty G, Roberts AB, Roche NS, Sporn MB, de Crombrugghe B (1988) A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta. Cell 52:405–414PubMedCrossRefGoogle Scholar
  148. Rubel D, Frese J, Martin M, Leibnitz A, Girgert R, Miosge N, Eckes B, Müller G-A, Gross O (2014a) Collagen receptors integrin alpha2beta1 and discoidin domain receptor 1 regulate maturation of the glomerular basement membrane and loss of integrin alpha2beta1 delays kidney fibrosis in COL4A3 knockout mice. Matrix Biol 34:13–21PubMedCrossRefGoogle Scholar
  149. Schulz J-N, Zeltz C, Sørensen IW, Barczyk M, Carracedo S, Hallinger R, Niehoff A, Eckes B, Gullberg D (2015) Reduced Granulation Tissue and Wound Strength in the Absence of α11β1 Integrin. J Investig Dermatol 135:1435–1444PubMedPubMedCentralCrossRefGoogle Scholar
  150. Sherratt MJ (2013) Age-Related Tissue Stiffening: Cause and Effect. Adv Wound Care (New Rochelle) 2:11–17CrossRefGoogle Scholar
  151. Shyu KG, Wang BW, Kuan P, Chang H (2008) RNA interference for discoidin domain receptor 2 attenuates neointimal formation in balloon injured rat carotid artery. Arterioscler Thromb Vasc Biol 28:1447–1453PubMedCrossRefGoogle Scholar
  152. Siddiqui K, Kim GW, Lee DH, Shin HR, Yang EG, Lee NT, Yang BS (2009) Actinomycin D identified as an inhibitor of discoidin domain receptor 2 interaction with collagen through an insect cell based screening of a drug compound library. Biol Pharm Bull 32:136–141PubMedCrossRefGoogle Scholar
  153. Singer K, Luo R, Jeong SJ, Piao X (2013) GPR56 and the developing cerebral cortex: cells, matrix, and neuronal migration. Mol Neurobiol 47:186–196PubMedCrossRefGoogle Scholar
  154. Sivakumar L, Agarwal G (2010) The influence of discoidin domain receptor 2 on the persistence length of collagen type I fibers. Biomaterials 31:4802–4808PubMedCrossRefGoogle Scholar
  155. Smethurst PA, Onley DJ, Jarvis GE, O’Connor MN, Knight CG, Herr AB, Ouwehand WH, Farndale RW (2007) Structural basis for the platelet–collagen interaction: the smallest motif within collagen that recognizes and activates platelet glycoprotein vi contains two glycine-proline-hydroxyproline triplets. J Biol Chem 282:1296–1304PubMedCrossRefGoogle Scholar
  156. Smith PC, Caceres M, Martinez C, Oyarzun A, Martinez J (2015) Gingival wound healing: an essential response disturbed by aging? J Dent Res 94:395–402PubMedPubMedCentralCrossRefGoogle Scholar
  157. Staudinger LA, Spano SJ, Lee W, Coelho N, Rajshankar D, Bendeck MP, Moriarty T, McCulloch CA (2013) Interactions between the discoidin domain receptor 1 and beta1 integrin regulate attachment to collagen. Biol Open 2:1148–1159PubMedPubMedCentralCrossRefGoogle Scholar
  158. Stopak D, Harris AK (1982) Connective tissue morphogenesis by fibroblast traction. Dev Biol 90:383–398PubMedCrossRefGoogle Scholar
  159. Taguchi T, Razzaque MS (2007) The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol Med 13:45–53PubMedCrossRefGoogle Scholar
  160. Talior-Volodarsky I, Connelly KA, Arora PD, Gullberg D, McCulloch CA (2012) α11 integrin stimulates myofibroblast differentiation in diabetic cardiomyopathy. Cardiovasc Res 96:265–275PubMedCrossRefGoogle Scholar
  161. Tang S, Lucius R, Wenck H, Gallinat S, Weise JM (2013) UV-mediated downregulation of the endocytic collagen receptor, Endo180, contributes to accumulation of extracellular collagen fragments in photoaged skin. J Dermatol Sci 70:42–48PubMedCrossRefGoogle Scholar
  162. Tiger CF, Fougerousse F, Grundstrom G, Velling T, Gullberg D (2001) alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol 237:116–129PubMedCrossRefGoogle Scholar
  163. Trial J, Entman ML, Cieslik KA (2016) Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart. J Mol Cell Cardiol 91:28–34PubMedCrossRefGoogle Scholar
  164. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R (2012) Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 31:295–321PubMedPubMedCentralCrossRefGoogle Scholar
  165. van Putten S, Shafieyan Y, Hinz B (2015) Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol (in press)Google Scholar
  166. Varas L, Ohlsson LB, Honeth G, Olsson A, Bengtsson T, Wiberg C, Bockermann R, Jarnum S, Richter J, Pennington D, Johnstone B, Lundgren-Akerlund E, Kjellman C (2007) Alpha10 integrin expression is up-regulated on fibroblast growth factor-2-treated mesenchymal stem cells with improved chondrogenic differentiation potential. Stem Cells Dev 16:965–978PubMedCrossRefGoogle Scholar
  167. Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S (2002) Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J Biol Chem 277:37377–37381PubMedCrossRefGoogle Scholar
  168. Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23PubMedCrossRefGoogle Scholar
  169. Vogel WF, Abdulhussein R, Ford CE (2006) Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18:1108–1116PubMedCrossRefGoogle Scholar
  170. Wang J, Lu H, Liu X, Deng Y, Sun T, Li F, Ji S, Nie X, Yao L (2002) Functional analysis of discoidin domain receptor 2 in synovial fibroblasts in rheumatoid arthritis. J Autoimmun 19:161–168PubMedCrossRefGoogle Scholar
  171. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87:733–743PubMedCrossRefGoogle Scholar
  172. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040PubMedPubMedCentralCrossRefGoogle Scholar
  174. Xia H, Seeman J, Hong J, Hergert P, Bodem V, Jessurun J, Smith K, Nho R, Kahm J, Gaillard P, Henke C (2012) Low alpha(2)beta(1) integrin function enhances the proliferation of fibroblasts from patients with idiopathic pulmonary fibrosis by activation of the beta-catenin pathway. Am J Pathol 181:222–233PubMedPubMedCentralCrossRefGoogle Scholar
  175. Xu H, Raynal N, Stathopoulos S, Myllyharju J, Farndale RW, Leitinger B (2011) Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol 30:16–26PubMedPubMedCentralCrossRefGoogle Scholar
  176. Yang J, Wang Z, Leng D, Dai H, Wang J, Liang J, Jiang D, Wang C (2014a) G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Exp Biol Med 239:686–696CrossRefGoogle Scholar
  177. Yang L, Friedland S, Corson N, Xu L (2014b) GPR56 Inhibits Melanoma Growth by Internalizing and Degrading Its Ligand TG2. Cancer Res 74:1022–1031PubMedCrossRefGoogle Scholar
  178. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24–34PubMedCrossRefGoogle Scholar
  179. Zeltz C, Gullberg D (2016) The integrin–collagen connection – a glue for tissue repair? J Cell Sci 129:653–664PubMedCrossRefGoogle Scholar
  180. Zeltz C, Orgel J, Gullberg D (2014) Molecular composition and function of integrin-based collagen glues-introducing COLINBRIs. Biochim Biophys Acta 1840:2533–2548PubMedCrossRefGoogle Scholar
  181. Zent R, Yan X, Su Y, Hudson BG, Borza DB, Moeckel GW, Qi Z, Sado Y, Breyer MD, Voziyan P, Pozzi A (2006) Glomerular injury is exacerbated in diabetic integrin alpha1-null mice. Kidney Int 70:460–470PubMedCrossRefGoogle Scholar
  182. Zhang Z-G, Bothe I, Hirche F, Zweers M, Gullberg D, Pfitzer G, Krieg T, Eckes B, Aumailley M (2006) Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins: contribution of α2β1 integrin. J Cell Sci 119:1886–1895PubMedCrossRefGoogle Scholar
  183. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, Keely PJ, Longmore GD (2013) The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol 15:677–687PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhou L, Hinerman JM, Blaszczyk M, Miller JL, Conrady DG, Barrow AD, Chirgadze DY, Bihan D, Farndale RW, Herr AB (2016) Structural basis for collagen recognition by the immune receptor OSCAR. Blood 127:529–537PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zigrino P, Drescher C, Mauch C (2001) Collagen-induced proMMP-2 activation by MT1-MMP in human dermal fibroblasts and the possible role of alpha2beta1 integrins. Eur J Cell Biol 80:68–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nuno Miranda Coelho
    • 1
  • Christopher A. McCulloch
    • 1
  1. 1.Matrix Dynamics Group, Faculty of DentistryUniversity of TorontoTorontoCanada

Personalised recommendations