Cell and Tissue Research

, Volume 367, Issue 1, pp 83–93 | Cite as

The MICOS complex of human mitochondria

  • Vera Kozjak-Pavlovic


Mitochondria are organelles of endosymbiotic origin, surrounded by two membranes. The inner membrane forms invaginations called cristae that enhance its surface and are important for mitochondrial function. A recently described mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane is crucial for the formation and maintenance of cristae structure. The MICOS complex in human mitochondria exhibits specificities and greater complexity in comparison to the yeast system. Many subunits of this complex have been previously described, but several others and their function remain to be explored. This review will summarize our present knowledge about the human MICOS complex and its constituents, while discussing the future research perspectives in this exciting and important field.


MICOS SAM MIB Mitochondria Cristae 



We thank Heike Rampelt and Suvagata Roy Chowdhury for critically reading the manuscript and for helpful suggestions.


  1. Ajroud-Driss S, Fecto F, Ajroud K, Lalani I, Calvo SE, Mootha VK, Deng HX, Siddique N, Tahmoush AJ, Heiman-Patterson TD, Siddique T (2015) Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy. Neurogenetics 16:1–9CrossRefPubMedGoogle Scholar
  2. Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M (2012) MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 23:247–257CrossRefPubMedPubMedCentralGoogle Scholar
  3. An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS (2012) CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J Biol Chem 287:7411–7426CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465CrossRefPubMedGoogle Scholar
  5. Armstrong LC, Komiya T, Bergman BE, Mihara K, Bornstein P (1997) Metaxin is a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. J Biol Chem 272:6510–6518CrossRefPubMedGoogle Scholar
  6. Armstrong LC, Saenz AJ, Bornstein P (1999) Metaxin 1 interacts with metaxin 2, a novel related protein associated with the mammalian mitochondrial outer membrane. J Cell Biochem 74:11–22CrossRefPubMedGoogle Scholar
  7. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG, Verschueren A, Rouzier C, Le Ber I, Auge G, Cochaud C, Lespinasse F, N’Guyen K, de Septenville A, Brice A, Yu-Wai-Man P et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137:2329–2345CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, Hoppert M, Jakobs S, Meinecke M (2015) Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metab 21:756–763CrossRefPubMedGoogle Scholar
  9. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180CrossRefPubMedGoogle Scholar
  10. Bohnert M, Wenz LS, Zerbes RM, Horvath SE, Stroud DA, von der Malsburg K, Muller JM, Oeljeklaus S, Perschil I, Warscheid B, Chacinska A, Veenhuis M, van der Klei IJ, Daum G, Wiedemann N, Becker T, Pfanner N, van der Laan M (2012) Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Mol Biol Cell 23:3948–3956CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bohnert M, Zerbes RM, Davies KM, Muhleip AW, Rampelt H, Horvath SE, Boenke T, Kram A, Perschil I, Veenhuis M, Kuhlbrandt W, van der Klei IJ, Pfanner N, van der Laan M (2015) Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab 21:747–755CrossRefPubMedGoogle Scholar
  12. Bornstein P, Mckinney CE, Lamarca ME, Winfield S, Shingu T, Devarayalu S, Vos HL, Ginns EI (1995) Metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is required for embryonic development in the mouse: implications for Gaucher disease. Proc Natl Acad Sci U S A 92:4547–4551CrossRefPubMedPubMedCentralGoogle Scholar
  13. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS (2011) ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 286:2918–2932CrossRefPubMedGoogle Scholar
  14. Darshi M, Trinh KN, Murphy AN, Taylor SS (2012) Targeting and import mechanism of coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) into the mitochondrial intermembrane space. J Biol Chem 287:39480–39491CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ding C, Wu Z, Huang L, Wang Y, Xue J, Chen S, Deng Z, Wang L, Song Z, Chen S (2015) Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Sci Rep 5:16064CrossRefPubMedPubMedCentralGoogle Scholar
  16. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324CrossRefPubMedGoogle Scholar
  17. Frezza C, Cipolat S, Martins De Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189CrossRefPubMedGoogle Scholar
  18. Genin EC, Plutino M, Bannwarth S, Villa E, Cisneros‐Barroso E, Roy M, Ortega‐Vila B, Fragaki K, Lespinasse F, Pinero‐Martos E, Augé G, Moore D, Burté F, Lacas‐Gervais S, Kageyama Y, Itoh K, Yu‐Wai‐Man P, Sesaki H, Ricci JE, Vives‐Bauza C et al (2016) CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Mol Med 8:58–72CrossRefPubMedGoogle Scholar
  19. Gentle I, Gabriel K, Beech P, Waller R, Lithgow T (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D’Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43:259–263CrossRefPubMedGoogle Scholar
  21. Ghochani M, Nulton JD, Salamon P, Frey TG, Rabinovitch A, Baljon ARC (2010) Tensile forces and shape entropy explain observed crista structure in mitochondria. Biophys J 99:3244–3254CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gieffers C, Korioth F, Heimann P, Ungermann C, Frey J (1997) Mitofilin Is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp Cell Res 232:395–399CrossRefPubMedGoogle Scholar
  23. Gilkerson RW, Selker JM, Capaldi RA (2003) The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546:355–358CrossRefPubMedGoogle Scholar
  24. Guarani V, Mcneill EM, Paulo JA, Huttlin EL, Frohlich F, Gygi SP, Van Vactor D, Harper JW (2015) QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. eLife 4:eLife.06265CrossRefGoogle Scholar
  25. Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30:4356–4370CrossRefPubMedPubMedCentralGoogle Scholar
  26. Head BP, Zulaika M, Ryazantsev S, van der Bliek AM (2011) A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans. Mol Biol Cell 22:831–841CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195:323–340CrossRefPubMedPubMedCentralGoogle Scholar
  28. Horvath SE, Rampelt H, Oeljeklaus S, Warscheid B, van der Laan M, Pfanner N (2015) Role of membrane contact sites in protein import into mitochondria. Prot Sci 24:277–297CrossRefGoogle Scholar
  29. Humphries AD, Streimann IC, Stojanovski D, Johnston AJ, Yano M, Hoogenraad NJ, Ryan MT (2005) Dissection of the mitochondrial import and assembly pathway for human Tom40. J Biol Chem 280:11535–11543CrossRefPubMedGoogle Scholar
  30. Huynen MA, Mühlmeister M, Gotthardt K, Guerrero-Castillo S, Brandt U (2015) Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochim Biophys Acta 1863:91–101CrossRefPubMedGoogle Scholar
  31. Icho T, Ikeda T, Matsumoto Y, Hanaoka F, Kaji K, Tsuchida N (1994) A novel human gene that is preferentially transcribed in heart muscle. Gene 144:301–306CrossRefPubMedGoogle Scholar
  32. Ioakeimidis F, Ott C, Kozjak-Pavlovic V, Violitzi F, Rinotas V, Makrinou E, Eliopoulos E, Fasseas C, Kollias G, Douni E (2014) A splicing mutation in the novel mitochondrial protein DNAJC11 causes motor neuron pathology associated with cristae disorganization, and lymphoid abnormalities in mice. PLoS ONE 9, e104237CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, Deckers M, Rehling P, Jakobs S (2013) STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc Natl Acad Sci U S A 110:8936–8941CrossRefPubMedPubMedCentralGoogle Scholar
  34. John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JML, Rangell L, Bennett MJ, Zha J (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16:1543–1554CrossRefPubMedPubMedCentralGoogle Scholar
  35. Khalifat N, Puff N, Bonneau S, Fournier JB, Angelova MI (2008) Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys J 95:4924–4933CrossRefPubMedPubMedCentralGoogle Scholar
  36. Koob S, Barrera M, Anand R, Reichert AS (2015) The non-glycosylated isoform of MIC26 is a constituent of the mammalian MICOS complex and promotes formation of crista junctions. Biochim Biophys Acta 1853:1551–1563CrossRefPubMedGoogle Scholar
  37. Kornblum C, Nicholls TJ, Haack TB, Schöler S, Peeva V, Danhauser K, Hallmann K, Zsurka G, Rorbach J, Iuso A, Wieland T, Sciacco M, Ronchi D, Comi GP, Moggio M, Quinzii CM, Dimauro S, Calvo SE, Mootha VK, Klopstock T et al (2013) Loss-of-function mutations in MGME1 impair mtDNA replication and cause multi-systemic mitochondrial disease. Nat Genet 45:214–219CrossRefPubMedPubMedCentralGoogle Scholar
  38. Korner C, Barrera M, Dukanovic J, Eydt K, Harner M, Rabl R, Vogel F, Rapaport D, Neupert W, Reichert AS (2012) The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol Biol Cell 23:2143–2155CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kozjak V, Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C, Pfanner N (2003) An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 278:48520–48523CrossRefPubMedGoogle Scholar
  40. Kozjak-Pavlovic V, Ross K, Benlasfer N, Kimmig S, Karlas A, Rudel T (2007) Conserved roles of Sam50 and metaxins in VDAC biogenesis. EMBO Rep 8:576–582CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kozjak-Pavlovic V, Prell F, Thiede B, Götz M, Wosiek D, Ott C, Rudel T (2014) C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly. J Mol Biol 426:908–920CrossRefPubMedGoogle Scholar
  42. Li H, Ruan Y, Zhang K, Jian F, Hu C, Miao L, Gong L, Sun L, Zhang X, Chen S, Chen H, Liu D, Song Z (2015) Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ 23:380–392CrossRefPubMedGoogle Scholar
  43. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560CrossRefPubMedGoogle Scholar
  44. Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG (2015) Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol 25:1489–1495CrossRefPubMedGoogle Scholar
  45. Odgren P, Toukatly G, Bangs P, Gilmore R, Fey E (1996) Molecular characterization of mitofilin (HMP), a mitochondria-associated protein with predicted coiled coil and intermembrane space targeting domains. J Cell Sci 109:2253–2264PubMedGoogle Scholar
  46. Ott C, Ross K, Straub S, Thiede B, Gotz M, Goosmann C, Krischke M, Mueller MJ, Krohne G, Rudel T, Kozjak-Pavlovic V (2012) Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol Cell Biol 32:1173–1188CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ott C, Dorsch E, Fraunholz M, Straub S, Kozjak-Pavlovic V (2015) Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits. PLoS ONE 10, e0120213CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex i disease biology. Cell 134:112–123CrossRefPubMedPubMedCentralGoogle Scholar
  49. Palmer CS, Osellame LD, Stojanovski D, Ryan MT (2011) The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 23:1534–1545CrossRefPubMedGoogle Scholar
  50. Park Y-U, Jeong J, Lee H, Mun JY, Kim J-H, Lee JS, Nguyen MD, Han SS, Suh P-G, Park SK (2010) Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci U S A 107:17785–17790CrossRefPubMedPubMedCentralGoogle Scholar
  51. Paschen SA, Waizenegger T, Stan T, Preuss M, Cyrklaff M, Hell K, Rapaport D, Neupert W (2003) Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature 426:862–866CrossRefPubMedGoogle Scholar
  52. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, Darshi M, Deckers M, Hoppins S, Icho T, Jakobs S, Ji J, Kozjak-Pavlovic V, Meisinger C, Odgren PR, Park SK, Rehling P, Reichert AS, Sheikh MS, Taylor SS et al (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol 204:1083–1086CrossRefPubMedPubMedCentralGoogle Scholar
  54. Renken C, Siragusa G, Perkins G, Washington L, Nulton J, Salamon P, Frey TG (2002) A thermodynamic model describing the nature of the crista junction: a structural motif in the mitochondrion. J Struct Biol 138:137–144CrossRefPubMedGoogle Scholar
  55. Rossi MN, Carbone M, Mostocotto C, Mancone C, Tripodi M, Maione R, Amati P (2009) Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J Biol Chem 284:31616–31624CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schauble S, King CC, Darshi M, Koller A, Shah K, Taylor SS (2007) Identification of ChChd3 as a novel substrate of the cAMP-dependent protein kinase (PKA) using an analog-sensitive catalytic subunit. J Biol Chem 282:14952–14959CrossRefPubMedGoogle Scholar
  57. Turkieh A, Caubère C, Barutaut M, Desmoulin F, Harmancey R, Galinier M, Berry M, Dambrin C, Polidori C, Casteilla L, Koukoui F, Rouet P, Smih F (2014) Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart. J Clin Invest 124:2277–2286CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247CrossRefPubMedPubMedCentralGoogle Scholar
  59. von der Malsburg K, Müller Judith M, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D, Hutu Dana P, Zerbes Ralf M, Schulze-Specking A, Meyer Helmut E, Martinou J-C, Rospert S, Rehling P, Meisinger C, Veenhuis M, Warscheid B et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21:694–707CrossRefPubMedGoogle Scholar
  60. Weber TA, Koob S, Heide H, Wittig I, Head B, van der Bliek A, Brandt U, Mittelbronn M, Reichert AS (2013) APOOL is a cardiolipin-binding constituent of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria. PLoS ONE 8, e63683CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wiedemann N, Kozjak V, Chacinska A, Schonfisch B, Rospert S, Ryan MT, Pfanner N, Meisinger C (2003) Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–571CrossRefPubMedGoogle Scholar
  62. Wurm CA, Jakobs S (2006) Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett 580:5628–5634CrossRefPubMedGoogle Scholar
  63. Xie J, Marusich MF, Souda P, Whitelegge J, Capaldi RA (2007) The mitochondrial inner membrane protein Mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett 581:3545–3549CrossRefPubMedGoogle Scholar
  64. Yang R-F, Sun L-H, Zhang R, Zhang Y, Luo Y-X, Zheng W, Zhang Z-Q, Chen H-Z, Liu D-P (2015) Suppression of Mic60 compromises mitochondrial transcription and oxidative phosphorylation. Sci Rep 5:7990CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zerbes RM, Höß P, Pfanner N, van der Laan M, Bohnert M (2016) Distinct roles of Mic12 and Mic27 in the mitochondrial contact site and cristae organizing system. J Mol Biol. doi: 10.1016/j.jmb.2016.02.031 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Biocenter, Chair of MicrobiologyUniversity of WürzburgWürzburgGermany

Personalised recommendations