Cell and Tissue Research

, Volume 365, Issue 3, pp 483–493 | Cite as

Scarless wound healing: finding the right cells and signals

  • Tripp Leavitt
  • Michael S. Hu
  • Clement D. Marshall
  • Leandra A. Barnes
  • H. Peter Lorenz
  • Michael T. Longaker


From the moment we are born, every injury to the skin has the potential to form a scar, many of which can impair form and/or function. As such, scar management constitutes a billion-dollar industry. However, effectively promoting scarless wound healing remains an elusive goal. The complex interactions of wound healing contribute to our inability to recapitulate scarless wound repair as it occurs in nature, such as in fetal skin and the oral mucosa. However, many new advances have occurred in recent years, some of which have translated scientific findings from bench to bedside. In vivo lineage tracing has helped establish a variety of novel cellular culprits that may act as key drivers of the fibrotic response. These newly characterized cell populations present further targets for therapeutic intervention, some of which have previously demonstrated promising results in animal models. Here, we discuss several recent studies that identify exciting approaches for diminishing scar formation. Particular attention will also be paid to the canonical Wnt/β-catenin signaling pathway, which plays an important role in both embryogenesis and tissue repair. New insights into the differential effects of Wnt signaling on heterogeneous fibroblast and keratinocyte populations within the skin further demonstrate methods by which wound healing can be re-directed to a more fetal scarless phenotype.

Graphical abstract

Recent approaches to reducing scar formation. Representation showing novel scientific approaches for decreasing scar formation, including the targeting of pro-fibrotic cell populations based on surface molecule expression (e.g. DPP4+ fibroblasts, ADAM12+ pericytes). Modulation of cellular mechanotransduction pathways are another means to reduce scar formation, both at the molecular level or, macroscopically with dressings designed to offload tension, at cutaneous wound sites (ADAM12 a disintegrin and metalloprotease 12, DPP4 dipeptidyl peptidase-4, FAK focal adhesion kinase)


Wound healing Fibroblast Scarless Wnt β-catenin 


Compliance with ethical standards

Financial disclosure

The authors have no conflicting financial interests to disclose.


  1. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener M-O, MacDougald OA, Distler O, Schett G, Distler JHW (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amerongen AV, Veerman EC (2002) Saliva—the defender of the oral cavity. Oral Dis 8:12–22CrossRefPubMedGoogle Scholar
  3. Bastakoty D, Saraswati S, Cates J, Lee E, Nanney LB, Young PP (2015) Inhibition of Wnt/beta-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J 29:4881–4892CrossRefPubMedGoogle Scholar
  4. Biernaskie J, Paris M, Morozova O, Fagan BM, Marra M, Pevny L, Miller FD (2009) SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5:610–623CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carre AL, James AW, MacLeod L, Kong W, Kawai K, Longaker MT, Lorenz HP (2010) Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts. Plast Reconstr Surg 125:74–88CrossRefPubMedGoogle Scholar
  6. CDC (2010) Centers for disease control and prevention. National hospital discharge survey: 2010 table. Procedures by selected patient characteristics. Number by procedure category and age.
  7. Cerqueira MT, Pirraco RP, Marques AP (2015) Stem cells in skin wound healing: are we there yet? Adv Wound Care (New Rochelle) 5:164-175CrossRefGoogle Scholar
  8. Cheng J, Yu H, Deng S, Shen G (2010) MicroRNA profiling in mid- and late-gestational fetal skin: implication for scarless wound healing. Tohoku J Exp Med 221:203–209CrossRefPubMedGoogle Scholar
  9. Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, Alman BA (2002) Beta-catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A 99:6973–6978CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cheon SS, Wei Q, Gurung A, Youn A, Bright T, Poon R, Whetstone H, Guha A, Alman BA (2006) Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J 20:692–701CrossRefPubMedGoogle Scholar
  11. Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012CrossRefPubMedGoogle Scholar
  12. Collins CA, Kretzschmar K, Watt FM (2011) Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin. Development 138:5189–5199CrossRefPubMedCentralGoogle Scholar
  13. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372CrossRefPubMedGoogle Scholar
  14. Cullen KA, Hall MJ, Golosinskiy A (2009) Ambulatory surgery in the United States, 2006. Natl Health Stat Report 2009:1-25Google Scholar
  15. Desai VD, Hsia HC, Schwarzbauer JE (2014) Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells. PLoS One 9:e86865CrossRefPubMedPubMedCentralGoogle Scholar
  16. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66PubMedCentralGoogle Scholar
  17. de la Roche M, Ibrahim AE, Mieszczanek J, Bienz M (2014) LEF1 and B9L shield beta-catenin from inactivation by Axin, desensitizing colorectal cancer cells to tankyrase inhibitors. Cancer Res 74:1495–1505CrossRefPubMedPubMedCentralGoogle Scholar
  18. de Souza KS, Cantaruti TA, Azevedo GM Jr, Galdino DA, Rodrigues CM, Costa RA, Vaz NM, Carvalho CR (2015) Improved cutaneous wound healing after intraperitoneal injection of alpha-melanocyte-stimulating hormone. Exp Dermatol 24:198–203CrossRefPubMedGoogle Scholar
  19. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843CrossRefPubMedGoogle Scholar
  20. Ding J, Ma Z, Liu H, Kwan P, Iwashina T, Shankowsky HA, Wong D, Tredget EE (2014) The therapeutic potential of a C-X-C chemokine receptor type 4 (CXCR-4) antagonist on hypertrophic scarring in vivo. Wound Repair Regen 22:622–630CrossRefPubMedGoogle Scholar
  21. Doi H, Kitajima Y, Luo L, Yan C, Tateishi S, Ono Y, Urata Y, Goto S, Mori R, Masuzaki H, Shimokawa I, Hirano A, Li TS (2016) Potency of umbilical cord blood- and Wharton’s jelly-derived mesenchymal stem cells for scarless wound healing. Sci Rep 6:18844CrossRefPubMedPubMedCentralGoogle Scholar
  22. Driskell RR, Watt FM (2015) Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 25:92–99CrossRefGoogle Scholar
  23. Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124:1179–1182CrossRefPubMedPubMedCentralGoogle Scholar
  24. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, Ferron SR, Herault Y, Pavlovic G, Ferguson-Smith AC, Watt FM (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:277–281CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18:1262–1270CrossRefPubMedGoogle Scholar
  26. Finkelstein E, Corso PS, Miller TR (2006) The incidence and economic burden of injuries in the United States. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Galiano RD, Michaels J, Dobryansky M, Levine JP, Gurtner GC (2004) Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 12:485–492CrossRefPubMedGoogle Scholar
  28. Gay D, Kwon O, Zhang Z, Spata M, Plikus MV, Holler PD, Ito M, Yang Z, Treffeisen E, Kim CD, Nace A, Zhang X, Baratono S, Wang F, Ornitz DM, Millar SE, Cotsarelis G (2013) Fgf9 from dermal [gamma][delta] T cells induces hair follicle neogenesis after wounding. Nat Med 19:916–923CrossRefPubMedPubMedCentralGoogle Scholar
  29. Glim JE, Everts V, Niessen FB, Ulrich MM, Beelen RH (2014) Extracellular matrix components of oral mucosa differ from skin and resemble that of foetal skin. Arch Oral Biol 59:1048–1055CrossRefPubMedGoogle Scholar
  30. Glim JE, Beelen RH, Niessen FB, Everts V, Ulrich MM (2015) The number of immune cells is lower in healthy oral mucosa compared to skin and does not increase after scarring. Arch Oral Biol 60:272–281CrossRefPubMedGoogle Scholar
  31. Gras C, Ratuszny D, Hadamitzky C, Zhang H, Blasczyk R, Figueiredo C (2015) miR-145 contributes to hypertrophic scarring of the skin by inducing myofibroblast activity. Mol Med 21:296–304CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefPubMedGoogle Scholar
  33. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816CrossRefPubMedGoogle Scholar
  34. Ho S, Marcal H, Foster LJ (2014) Towards scarless wound healing: a comparison of protein expression between human, adult and foetal fibroblasts. Biomed Res Int 2014:676493PubMedPubMedCentralGoogle Scholar
  35. Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F (2015) Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis 11:95–104CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hu MS, Januszyk M, Hong WX, Walmsley GG, Zielins ER, Atashroo DA, Maan ZN, McArdle A, Takanishi DM Jr, Gurtner GC, Longaker MT, Lorenz HP (2014) Gene expression in fetal murine keratinocytes and fibroblasts. J Surg Res 190:344–357CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354CrossRefPubMedGoogle Scholar
  38. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447:316–320CrossRefPubMedGoogle Scholar
  39. Kieran I, Knock A, Bush J, So K, Metcalfe A, Hobson R, Mason T, O’Kane S, Ferguson M (2013) Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen 21:428–436CrossRefPubMedGoogle Scholar
  40. Lam AP, Gottardi CJ (2011) Beta-catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol 23:562–567CrossRefPubMedPubMedCentralGoogle Scholar
  41. Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126:1172–1180CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee SH, Kim MY, Kim HY, Lee YM, Kim H, Nam KA, Roh MR, Mindo S, Chung KY, Choi KY (2015) The dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing. J Exp Med 212:1061–1080CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lee WJ, Park JH, Shin JU, Noh H, Lew DH, Yang WI, Yun CO, Lee KH, Lee JH (2015) Endothelial-to-mesenchymal transition induced by Wnt 3a in keloid pathogenesis. Wound Repair Regen 23:435–442CrossRefPubMedGoogle Scholar
  44. Li M, Luan F, Zhao Y, Hao H, Liu J, Dong L, Fu X, Han W (2015) Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J  10.1111/iwj.12551 Google Scholar
  45. Lichtenberger BM, Mastrogiannaki M, Watt FM (2016) Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat Commun 7:10537CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lim AF, Weintraub J, Kaplan EN, Januszyk M, Cowley C, McLaughlin P, Beasley B, Gurtner GC, Longaker MT (2014) The embrace device significantly decreases scarring following scar revision surgery in a randomized controlled trial. Plast Reconstr Surg 133:398–405CrossRefPubMedPubMedCentralGoogle Scholar
  47. Longaker MT, Whitby DJ, Ferguson MW, Lorenz HP, Harrison MR, Adzick NS (1994) Adult skin wounds in the fetal environment heal with scar formation. Ann Surg 219:65–72CrossRefPubMedPubMedCentralGoogle Scholar
  48. Longaker MT, Rohrich RJ, Greenberg L, Furnas H, Wald R, Bansal V, Seify H, Tran A, Weston J, Korman JM, Chan R, Kaufman D, Dev VR, Mele JA, Januszyk M, Cowley C, McLaughlin P, Beasley B, Gurtner GC (2014) A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg 134:536–546CrossRefPubMedPubMedCentralGoogle Scholar
  49. Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E (1998) Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 111:850–857CrossRefPubMedGoogle Scholar
  50. Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS (1992) Scarless wound repair: a human fetal skin model. Development 114:253–259PubMedGoogle Scholar
  51. Maltseva O, Folger P, Zekaria D, Petridou S, Masur SK (2001) Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci 42:2490–2495PubMedGoogle Scholar
  52. Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA, Simons BD, Blanpain C (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489:257–262CrossRefPubMedGoogle Scholar
  53. Mia MM, Bank RA (2015) Paracrine factors of human amniotic fluid-derived mesenchymal stem cells show strong anti-fibrotic properties by inhibiting myofibroblast differentiation and collagen synthesis. J Stem Cell Res Ther 5:282Google Scholar
  54. Monaghan M, Browne S, Schenke-Layland K, Pandit A (2014) A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling. Mol Ther 22:786–796PubMedPubMedCentralGoogle Scholar
  55. Morris MW Jr, Allukian M 3rd, Herdrich BJ, Caskey RC, Zgheib C, Xu J, Dorsett-Martin W, Mitchell ME, Liechty KW (2014) Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair Regen 22:406–414CrossRefPubMedGoogle Scholar
  56. Nuschke A (2014) Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 10:29–37CrossRefPubMedGoogle Scholar
  57. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol Cell Physiol 277:C1–C19CrossRefGoogle Scholar
  58. Rinella L, Marano F, Berta L, Bosco O, Fraccalvieri M, Fortunati N, Frairia R, Catalano MG (2016) Extracorporeal shock waves modulate myofibroblast differentiation of adipose-derived stem cells. Wound Repair Regen 24:275–286CrossRefPubMedGoogle Scholar
  59. Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM, Drukker M, Januszyk M, Krampitz GW, Gurtner GC, Lorenz HP, Weissman IL, Longaker MT (2015) Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348:aaa2151CrossRefPubMedGoogle Scholar
  60. Robert R, Meyer W, Bishop S, Rosenberg L, Murphy L, Blakeney P (1999) Disfiguring burn scars and adolescent self-esteem. Burns 25:581–585CrossRefPubMedGoogle Scholar
  61. Sabapathy V, Sundaram B, Sreelakshmi VM, Mankuzhy P, Kumar S (2014) Human Wharton’s Jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One 9:e93726CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sato M (2006) Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol 86:300–307CrossRefPubMedGoogle Scholar
  63. Schmidt BA, Horsley V (2013) Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140:1517–1527CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sen CK, Ghatak S (2015) miRNA control of tissue repair and regeneration. Am J Pathol 185:2629–2640CrossRefPubMedGoogle Scholar
  65. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sheridan RL, Hinson MI, Liang MH, Nackel AF, Schoenfeld DA, Ryan CM, Mulligan JL, Tompkins RG (2000) Long-term outcome of children surviving massive burns. JAMA 283:69–73CrossRefPubMedGoogle Scholar
  67. Shi Y, Shu B, Yang R, Xu Y, Xing B, Liu J, Chen L, Qi S, Liu X, Wang P, Tang J, Xie J (2015) Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Res Ther 6:120CrossRefPubMedPubMedCentralGoogle Scholar
  68. Singer AJ, Hollander JE, Quinn JV (1997) Evaluation and management of traumatic lacerations. N Engl J Med 337:1142–1148CrossRefPubMedGoogle Scholar
  69. Singla DK, Singla RD, Abdelli LS, Glass C (2015) Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS One 10:e0120739CrossRefPubMedPubMedCentralGoogle Scholar
  70. Thielitz A, Vetter RW, Schultze B, Wrenger S, Simeoni L, Ansorge S, Neubert K, Faust J, Lindenlaub P, Gollnick HP, Reinhold D (2008) Inhibitors of dipeptidyl peptidase IV-like activity mediate antifibrotic effects in normal and keloid-derived skin fibroblasts. J Invest Dermatol 128:855–866CrossRefPubMedGoogle Scholar
  71. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363CrossRefPubMedGoogle Scholar
  72. Wang Z, Liu X, Zhang D, Wang X, Zhao F, Zhang T, Wang R, Lin X, Shi P, Pang X (2015) Phenotypic and functional modulation of 20–30 year old dermal fibroblasts by mid- and late-gestational keratinocytes in vitro. Burns 41:1064–1075CrossRefPubMedGoogle Scholar
  73. Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M, Nelson ER, Levi K, Paterno J, Vial IN, Kuang AA, Longaker MT, Gurtner GC (2012) Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 18:148–152CrossRefGoogle Scholar
  74. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhao F, Wang Z, Lang H, Liu X, Zhang D, Wang X, Zhang T, Wang R, Shi P, Pang X (2015) Dynamic expression of novel MiRNA candidates and MiRNA-34 family members in early- to mid-gestational fetal keratinocytes contributes to scarless wound healing by targeting the TGF-beta pathway. PLoS One 10:e0126087CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tripp Leavitt
    • 1
    • 2
  • Michael S. Hu
    • 1
    • 3
    • 4
  • Clement D. Marshall
    • 1
  • Leandra A. Barnes
    • 1
  • H. Peter Lorenz
    • 1
  • Michael T. Longaker
    • 1
    • 3
  1. 1.Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford University School of MedicineStanfordUSA
  2. 2.Boston University School of MedicineBostonUSA
  3. 3.Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordUSA
  4. 4.Department of Surgery, John A. Burns School of MedicineUniversity of Hawai’iHonoluluUSA

Personalised recommendations