Advertisement

Cell and Tissue Research

, Volume 364, Issue 3, pp 585–597 | Cite as

Cyclophilin A is a new M cell marker of bovine intestinal epithelium

  • Tetsuya Hondo
  • Shunsuke Someya
  • Yuya Nagasawa
  • Shunsuke Terada
  • Hitoshi Watanabe
  • Xiangning Chen
  • Kouichi Watanabe
  • Shyuichi Ohwada
  • Haruki Kitazawa
  • Michael T. Rose
  • Tomonori Nochi
  • Hisashi AsoEmail author
Regular Article

Abstract

Microfold (M) cells in the follicle-associated epithelium (FAE) of Peyer’s patches contribute to the mucosal immune response by the transcytosis of microorganisms. The mechanism by which M cells take up microorganisms, and the functional proteins by which they do this, are not clear. In order to explore one such protein, we developed a 2H5-F3 monoclonal antibody (2H5-F3 mAb) through its binding to bovine M cells, and identified the antibody reactive molecule as cyclophilin A (Cyp-A). The localization patterns of Cyp-A were very similar to the localization pattern of cytokeratin (CK) 18-positive M cells. Cyp-A was identified at the luminal surface of CK18-positive M cells in bovine jejunal and ileal FAE. The membranous localization of Cyp-A in the bovine intestinal cell line (BIE cells) increased as cells differentiated toward M cells, as determined by flow cytometry analysis. Additionally, BIE cells released Cyp-A to the extracellular space and the differentiation of BIE cells to M cells increased the secretion of Cyp-A, as determined by western blotting. Accordingly, Cyp-A may be localized in M cells in the small intestinal epithelium of cattle. The rise of the membranous localization and secretion of Cyp-A by differentiation toward M cells indicates that Cyp-A has an important role in the function of M cells. While Cyp-A of the M cell membrane may contribute to the uptake of viruses with peptidyl-prolyl cis-trans isomerase activity, in the extracellular space Cyp-A may work as a chemokine and contribute to the distribution of immuno-competent cells.

Keywords

M cell Follicle associated epithelium Peyer’s patch Bovine intestinal epithelium Cyclophilin A 

Notes

Author contributions

T.H., S.S. and H.A. conception and design of research; T.H., S.S., Y.N., S.T., H.W., X.C., K.W., S.O. and H.A. performed experiments; T.H. and S.S. analyzed data; T.H., S.S., K.W., S.O., H.K., T.N. and H.A. interpreted results of experiments; T.H. and S.S. prepared figures; T.H., S.S., and S.T. drafted manuscript; T.H., S.S., M.T.R. and H.A. edited and revised the manuscript; H.A. approved final version of manuscript.

Grants

This study was supported by a Grant-in-Aid for Scientific Research (B) (no. 15H04586) and a Grant-in-Aid for Exploratory Research (no. 26660217) from the Japan Society for the Promotion of Science (JSPS).

Compliance with ethical standards

Disclosures

No conflicts of Interest, financial or otherwise, are declared by the author(s).

References

  1. Andres PG, Beck PL, Mizoguchi E, Mizoguchi A, Bhan AK, Dawson T, Kuziel WA, Maeda N, MacDermott RP, Podolsky DK, Reinecker HC (2000) Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1 + lymphocyte-associated Th2-type immune response in the intestine. J Immunol 164:6303–12CrossRefPubMedGoogle Scholar
  2. Banks C, Bateman A, Payne R, Johnson P, Sheron N (2003) Chemokine expression in IBD. Mucosal Chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J Pathol 199:28–35CrossRefPubMedGoogle Scholar
  3. Beyaz F, Asti RN (2004) Development of ileal Peyer’s patches and follicle associated epithelium in bovine fetuses. Anat Histol Embryol 33:172–179CrossRefPubMedGoogle Scholar
  4. Bjarnason I, MacPherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566–1581CrossRefPubMedGoogle Scholar
  5. Bjerknes M, Cheng H (2005) Gastrointestinal stem cells. II. Intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 289:G381–G387CrossRefPubMedGoogle Scholar
  6. Bockman DE (1983) Functional histology of appendix. Arch Histol Jpn 46:271–292CrossRefPubMedGoogle Scholar
  7. Brittan M, Wright NA (2004) Stem cell in gastrointestinal structure and neoplastic development. Gut 53:899–910CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bye WA, Allan CH, Trier JS (1984) Structure, distribution, and origin of M cells in Peyer’s patches of mouse ileum. Gastroenterology 86:789–801PubMedGoogle Scholar
  9. Clark MA, Jepson MA, Simmons NL, Booth TA, Hirst BH (1993) Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem 41:1679–1687CrossRefPubMedGoogle Scholar
  10. Clark MA, Hirst BH, Jepson MA (1998) M-cell surface beta1 integrin expression and invasion-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer’s patch M cells. Infect Immun 66:1237–1243PubMedPubMedCentralGoogle Scholar
  11. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and Peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337:476–8CrossRefPubMedGoogle Scholar
  12. Flanagan WM, Corthésy B, Bram RJ, Crabtree GR (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352:803–807CrossRefPubMedGoogle Scholar
  13. Fotopoulos G, Harari A, Michetti P, Trono D, Pantaleo G, Kraehenbuhl JP (2002) Transepithelial transport of HIV-1 by M cells is receptor-mediated. Proc Natl Acad Sci U S A 99:9410–9414CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fruman DA, Burakoff SJ, Bierer BE (1994) Immunophilins in protein folding and immunosuppression. FASEB J 8:391–400PubMedGoogle Scholar
  15. Gebert A (1997) The role of M cells in the protection of mucosal membranes. Histochem Cell Biol 108:455–470CrossRefPubMedGoogle Scholar
  16. Gebert A, Rothkötter HJ, Pabst R (1994) Cytokeratin 18 is an M-cell marker in porcine Peyer’s patches. Cell Tissue Res 276:213–221CrossRefPubMedGoogle Scholar
  17. Giannasca PJ, Giannasca KT, Falk P, Gordon JI, Neutra MR (1994) Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am J Physiol Gastrointest Liver Physiol 267:G1108–G1121Google Scholar
  18. Gullberg E, Söderholm JD (2006) Peyer’s patches and M cells as potential sites of the inflammatory onset in Crohn’s disease. Ann N Y Acad Sci 1072:218–32CrossRefPubMedGoogle Scholar
  19. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547CrossRefPubMedGoogle Scholar
  20. Hase K, Murakami T, Takatsu H, Shimaoka T, Iimura M, Hamura K, Kawano K, Ohshima S, Chihara R, Itoh K, Yonehara S, Ohno H (2006) The membrane-bound chemokine CXCL16 expressed on follicle-associated epithelium and M cells mediates lympho-epithelial interaction in GALT. J Immunol 176:43–51CrossRefPubMedGoogle Scholar
  21. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S, Yabashi A, Waguri S, Nakato G, Kimura S, Murakami T, Iimura M, Hamura K, Fukuoka S, Lowe AW, Itoh K, Kiyono H, Ohno H (2009) Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462:226–30CrossRefPubMedGoogle Scholar
  22. Heggebø R, Press CM, Gunnes G, Lie KI, Tranulis MA, Ulvund M, Groschup MH, Landsverk T (2000) Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. J Gen Virol 81:2327–37CrossRefPubMedGoogle Scholar
  23. Heppner FL, Christ AD, Klein MA, Prinz M, Fried M, Kraehenbuhl JP, Aguzzi A (2001) Transepithelial prion transport by M cells. Nat Med 7:976–7CrossRefPubMedGoogle Scholar
  24. Hondo T, Kanaya T, Takakura I, Watanabe H, Takahashi Y, Nagasawa Y, Terada S, Ohwada S, Watanabe K, Kitazawa H, Rose MT, Yamaguchi T, Aso H (2011) Cytokeratin 18 is a specific marker of bovine intestinal M cell. Am J Physiol Gastrointest Liver Physiol 300:442–53CrossRefGoogle Scholar
  25. Jepson MA, Mason CM, Bennett MK, Simmons NL, Hirst BH (1992) Co-expression of vimentin and cytokeratins in M cells of rabbit intestinal lymphoid follicle-associated epithelium. Histochem J 24:33–39CrossRefPubMedGoogle Scholar
  26. Kanaya T, Miyazawa K, Takakura I, Itani W, Watanabe K, Ohwada S, Kitazawa H, Rose MT, McConochie HR, Okano H, Yamaguchi T, Aso H (2008) Differentiation of a murine intestinal epithelial cell line (MIE) toward the M cell lineage. Am J Physiol Gastrointest Liver Physiol 295:273–84CrossRefGoogle Scholar
  27. Kernéis S, Bogdanova A, Kraehenbuhl JP, Pringault E (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–52CrossRefPubMedGoogle Scholar
  28. Kraehenbuhl JP, Neutra MR (2000) Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 16:301–332CrossRefPubMedGoogle Scholar
  29. Kucharzik T, Lügering A, Lügering N, Rautenberg K, Linnepe M, Cichon C, Reichelt R, Stoll R, Schmidt MA, Domschke W (2000) Characterization of M cell development during indomethacin-induced ileitis in rats. Aliment Pharmacol Ther 14:247–256CrossRefPubMedGoogle Scholar
  30. Landsverk T (1979) The gastrointestinal mucosa in young milk-fed calves. A scanning electron and light microscopic investigation. Acta Vet Scand 20:572–582PubMedGoogle Scholar
  31. Landsverk T (1981a) Peyer’s patches and the follicle-associated epithelium in diarrheic calves. Pathomorphology, morphometry and acid phosphatase histochemistry. Acta Vet Scand 122:459–471Google Scholar
  32. Landsverk T (1981b) The epithelium covering Peyer’s patches in young milk-fed celves. An ultrastructural and enzyme histochemical investigation. Acta Vet Scand 22:198–210PubMedGoogle Scholar
  33. Landsverk T (1984) Is the ileo-caecal Peyer’s patch in ruminants a mammalian “bursa-equivalent”? Acta Pathol Microbiol Immunol Scand A 92:77–79PubMedGoogle Scholar
  34. Landsverk T (1987) The follicle-associated epithelium of ileal Peyer’s patch in ruminants is distinguished by its shedding of 50 nm particles. Immunol Cell Biol 65:251–261CrossRefPubMedGoogle Scholar
  35. Landsverk T (1988) Phagocytosis and transcytosis by the follicle-associated epithelium of the ileal Peyer’s patch in calves. Immunol Cell Biol 66:261–268CrossRefPubMedGoogle Scholar
  36. MacDermott RP (1999) Chemokines in the inflammatory bowel diseases. J Clin Immunol 19:266–72CrossRefPubMedGoogle Scholar
  37. Madara JL, Nash S, Moore R, Atisook K (1990) Structure and function of the intestinal epithelial barrier in health and disease. Monogr Pathol 31:306–24PubMedGoogle Scholar
  38. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. BioEssays 24:91–98CrossRefPubMedGoogle Scholar
  39. Miyazawa K, Aso H, Honda M, Kido T, Minashima T, Kanaya T, Watanabe K, Ohwada S, Rose MT, Yamaguchi T (2006) Identification of bovine dendritic cell phenotype from bovine peripheral blood. Res Vet Sci 81:40–45CrossRefPubMedGoogle Scholar
  40. Miyazawa K, Hondo T, Kanaya T, Tanaka S, Takakura I, Itani W, Rose MT, Kitazawa H, Yamaguchi T, Aso H (2010a) Characterization of newly established bovine intestinal epithelial cell line. Histochem Cell Biol 133:125–34CrossRefPubMedGoogle Scholar
  41. Miyazawa K, Kanaya T, Takakura I, Tanaka S, Hondo T, Watanabe H, Rose MT, Kitazawa H, Yamaguchi T, Katamine S, Nishida N, Aso H (2010b) Transcytosis of murine-adapted bovine spongiform encephalopathy agents in an in vitro bovine M cell model. J Virol 84:12285–91CrossRefPubMedPubMedCentralGoogle Scholar
  42. Momotani E, Whipple DL, Thiermann AB, Cheville NF (1988) Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into dome of ileal Peyer’s patches in calves. Vet Pathol 25:131–137CrossRefPubMedGoogle Scholar
  43. Neutra MR (1999) M cells in antigen sampling in mucosal tissues. Curr Top Microbiol Immunol 236:17–32PubMedGoogle Scholar
  44. Neutra MR, Pringault E, Kraehenbuhl JP (1996) Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 14:275–300CrossRefPubMedGoogle Scholar
  45. Owen RL, Jones AL (1974) Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66:189–203PubMedGoogle Scholar
  46. Paar M, Liebler EM, Pohlenz JF (1992) Uptake of ferritin by follicle-associ- ated epithelium in the colon of calves. Vet Pathol 29:120–128CrossRefPubMedGoogle Scholar
  47. Parsons KR, Bland AP, Hall GA (1991) Follicle associated epithelium of the gut associated lymphoid tissue of cattle. Vet Pathol 28:22–29CrossRefPubMedGoogle Scholar
  48. Rautenberg K, Cichon C, Heyer G, Demel M, Schmidt MA (1996) Immunocytochemical characterization of the follicle-associated epithelium of Peyer’s patches: anti-cytokeratin 8 antibody (clone 4.1.18) as a molecular marker for rat M cells. Eur J Cell Biol 71:363–370PubMedGoogle Scholar
  49. Regoli M, Bertelli E, Borghesi C, Nicoletti C (1995) Three-dimensional (3D-) reconstruction of M cells in rabbit Peyer’s patches; definition of the intraepithelial compartment of the follicle-associated epithelium. Anat Rec 243:19–26CrossRefPubMedGoogle Scholar
  50. Reynolds JD, Morris B (1983) The evolution and involution of Peyer’s patches in fetal and postnatal sheep. Eur J Immunol 13:627–635CrossRefPubMedGoogle Scholar
  51. Sharma R, Schumacher U, Adam E (1998) Lectin histochemistry reveals the appearance of M-cells in Peyer’s patches of SCID mice after syngeneic normal bone marrow transplantation. J Histochem Cytochem 46:143–148CrossRefPubMedGoogle Scholar
  52. Sherry B, Yarlett N, Strupp A, Cerami A (1992) Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A 89:3511–5CrossRefPubMedPubMedCentralGoogle Scholar
  53. Song F, Zhang X, Ren XB, Zhu P, Xu J, Wang L, Li YF, Zhong N, Ru Q, Zhang DW, Jiang JL, Xia B, Chen ZN (2011) Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity: direct binding between CyPA and the ectodomain of CD147. J Biol Chem 286:8197–203CrossRefPubMedPubMedCentralGoogle Scholar
  54. Suzuki J, Jin ZG, Meoli DF, Matoba T, Berk BC (2006) Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ Res 98:811–7CrossRefPubMedGoogle Scholar
  55. Takakura I, Miyazawa K, Kanaya T, Itani W, Watanabe K, Ohwada S, Watanabe H, Hondo T, Rose MT, Mori T, Sakaguchi S, Nishida N, Katamine S, Yamaguchi T, Aso H (2011) Orally administered prion protein is incorporated by m cells and spreads into lymphoid tissues with macrophages in prion protein knockout mice. Am J Pathol 179(3):1301–9CrossRefPubMedPubMedCentralGoogle Scholar
  56. Torres-Medina A (1981) Morphologic characteristics of the epithelial surface of aggregated lymphoid follicles (Peyer’s patches) in the small intestine of newborn gnotobiotic calves and pigs. Am J Vet Res 42:232–236PubMedGoogle Scholar
  57. Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9:1138–43CrossRefPubMedGoogle Scholar
  58. Turner JR (2006) Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 169:1901–9CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhao X, Sato A, Dela Cruz CS, Linehan M, Luegering A, Kucharzik T, Shirakawa AK, Marquez G, Farber JM, Williams I, Iwasaki A (2003) CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer’s patch CD11b + dendritic cells. J Immunol 171:2797–803CrossRefPubMedGoogle Scholar
  61. Zhou D, Mei Q, Li J, He H (2012) Cyclophilin A and viral infections. Biochem Biophys Res Commun 424:647–50CrossRefPubMedGoogle Scholar
  62. Zhu P, Ding J, Zhou J, Dong WJ, Fan CM, Chen ZN (2005) Expression of CD147 on monocytes/macrophages in rheumatoid arthritis: its potential role in monocyte accumulation and matrix metalloproteinase production. Arthritis Res 7:1023–1033CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tetsuya Hondo
    • 1
  • Shunsuke Someya
    • 1
  • Yuya Nagasawa
    • 1
  • Shunsuke Terada
    • 1
  • Hitoshi Watanabe
    • 1
    • 2
  • Xiangning Chen
    • 1
  • Kouichi Watanabe
    • 1
  • Shyuichi Ohwada
    • 1
  • Haruki Kitazawa
    • 3
  • Michael T. Rose
    • 4
  • Tomonori Nochi
    • 1
  • Hisashi Aso
    • 1
    Email author
  1. 1.Cellar Biology Laboratory, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  2. 2.Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research CenterKanazawa UniversityKanazawaJapan
  3. 3.Food Immunology Group, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  4. 4.Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityCardiganshireUK

Personalised recommendations