Cell and Tissue Research

, Volume 364, Issue 3, pp 465–474 | Cite as

Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro

  • Grazia Maugeri
  • Agata Grazia D’Amico
  • Rita Reitano
  • Salvatore Saccone
  • Concetta Federico
  • Sebastiano Cavallaro
  • Velia D’AgataEmail author
Regular Article


Mutation of the Parkin gene causes an autosomal recessive juvenile-onset form of Parkinson’s disease. However, recently, it has been also linked to a wide variety of malignancies, including glioblastoma multiforme (GBM). In this pathology, Parkin exhibits a tumor suppressor role by mitigating the proliferation rate in both in vitro and in vivo models. However, Parkin involvement in the hypoxic process has not as yet been investigated. GBM is the most common and aggressive primary brain tumor in adults and is characterized by hypoxic areas. The low oxygen supply causes the expression of hypoxia-inducible factors (HIFs) leading to an accumulation of pro-angiogenic factors and tumoral invasiveness. We assess the relationship between Parkin and two HIFs expressed during hypoxic conditions, namely HIF-1α and HIF-3α. Our data show that Parkin is downregulated under hypoxia and that it interferes with HIF expression based on cellular oxygen tension. These results suggest a role for the involvement of Parkin in GBM, although further studies will be needed to understand the mechanism by which it modulates HIF-1α and HIF-3α expression.


Parkin gene Glioblastoma multiforme Hypoxia HIF-1α HIF-3α 


Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.


  1. Barker FG, Davis RL, Chang SM, Prados MD (1996) Necrosis as a prognostic factor in glioblastoma multiforme. Cancer 77:1161–1166CrossRefPubMedGoogle Scholar
  2. Bouman L, Schlierf A, Lutz AK, Shan J, Deinlein A, Kast J, Galehdar Z, Palmisano V, Patenge N, Berg D, Gasser T, Augustin R, Trümbach D, Irrcher I, Park DS, Wurst W, Kilberg MS, Tatzelt J, Winklhofer KF (2011) Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 18:769–782CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927CrossRefPubMedGoogle Scholar
  4. Corn PG, McDonald ER III, Herman JG, El-Deiry WS (2003) Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel–Lindau protein. Nat Genet 35:229–237CrossRefPubMedGoogle Scholar
  5. Dachsel JC, Lücking CB, Deeg S, Schultz E, Lalowski M, Casademunt E, Corti O, Hampe C, Patenge N, Vaupel K, Yamamoto A, Dichgans M, Brice A, Wanker EE, Kahle PJ, Gasser T (2005) Parkin interacts with the proteasome subunit alpha4. FEBS Lett 579:3913–3919CrossRefPubMedGoogle Scholar
  6. Fett ME, Pilsl A, Paquet D, Bebber F van, Haass C, Tatzelt J, Schmid B, Winklhofer KF (2010) Parkin is protective against proteotoxic stress in a transgenic zebrafish model. PLoS One 5:e11783Google Scholar
  7. Fujimura A, Michiue H, Cheng Y, Uneda A, Tani Y, Nishiki T, Ichikawa T, Wei FY, Tomizawa K, Matsui H (2013)Cyclin G2 promotes hypoxia-driven local invasion of glioblastoma by orchestrating cytoskeletal dynamics.Neoplasia 15:1272–1281Google Scholar
  8. Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y, Kataoka A, Nukina N, Takahashi R, Chiba T (2008) Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27:6002–6011CrossRefPubMedGoogle Scholar
  9. Gossage L, Eisen T, Maher ER (2015) VHL, the story of a tumour suppressor gene. Nat Rev Cancer 15:55–64CrossRefPubMedGoogle Scholar
  10. Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31:2448–2460CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213PubMedGoogle Scholar
  12. Heidbreder M, Fröhlich F, Jöhren O, Dendorfer A, Qadri F, Dominiak P (2003) Hypoxia rapidly activates HIF-3α mRNA expression. FASEB J 17:1541–1543PubMedGoogle Scholar
  13. Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, Nakaso K, Culmsee C, Berninger B, Krappmann D, Tatzelt J, Winklhofer KF (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 27:1868–1878CrossRefPubMedGoogle Scholar
  14. Imai Y, Soda M, Takahashi R (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275:661–664Google Scholar
  15. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902CrossRefPubMedGoogle Scholar
  16. Ivan M, Kaelin WG Jr (2001) The von Hippel-Lindau tumor suppressor protein. Curr Opin Genet Dev 11:27–34CrossRefPubMedGoogle Scholar
  17. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17:6573–6586CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology 7:134–153CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605–608CrossRefPubMedGoogle Scholar
  20. La Cognata V, Iemmolo R, D'Agata V, Scuderi S, Drago F, Zappia M, Cavallaro S (2014) Increasing the coding potential of genomes through alternative splicing: the case of PARK2 gene. Curr Genomics 15:203–216CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lee SJ, Choi D, Rhim H, Kang S (2005) E3 ubiquitin ligase RNF2 interacts with the S6′ proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6′. Biochem J 389:457–463CrossRefPubMedPubMedCentralGoogle Scholar
  22. Maugeri G, D’amico AG, Magro G, Salvatorelli L, Barbagallo GM, Saccone S, Drago F, Cavallaro S, D'Agata V (2015) Expression profile of Parkin isoforms in human gliomas. Int J Oncol 2015:1282–1292Google Scholar
  23. Maynard MA, Ohh M (2004) von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 24:1–13CrossRefPubMedGoogle Scholar
  24. Quinn N, Critchley P, Marsden CD (1987) Young onset Parkinson disease. Mov Disord 2:73–91CrossRefPubMedGoogle Scholar
  25. Rabinowitz MH (2013) Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. J Med Chem 56:9369–9402CrossRefPubMedGoogle Scholar
  26. Scuderi S, D'amico AG, Federico C (2015) Different retinal expression patterns of IL-1α, IL-1β, and their receptors in a rat model of type 1 STZ-induced diabetes. J Mol Neurosci 56:431–439CrossRefPubMedGoogle Scholar
  27. Semenza G (1999a) Perspectives on oxygen sensing. Cell 98:281–284CrossRefPubMedGoogle Scholar
  28. Semenza G (1999b) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578CrossRefPubMedGoogle Scholar
  29. Semenza GL (2007) Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1.Exp Physiol 92:988–991Google Scholar
  30. Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1.Semin Cancer Biol 19:12–16Google Scholar
  31. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305CrossRefPubMedGoogle Scholar
  33. Tan EK, Puong KY, Chan DKY, Yew K, Fook-Chong S, Shen H, Ng PW, Woo J, Yuen Y, Pavanni R, Wong MC, Puvan K, Zhao Y (2005) Impaired transcriptional upregulation of Parkin promoter variant under oxidative stress and proteasomal inhibition: clinical association. Hum Genet 118:484–488Google Scholar
  34. Tay SP, Yeo CW, Chai C, Chua PJ, Tan HM, Ang AX, Yip DL, Sung JX, Tan PH, Bay BH, Wong SH, Tang C, Tan JM, Lim KL (2010) Parkin enhances the expression of cyclin-dependent kinase 6 and negatively regulates the proliferation of breast cancer cells. J Biol Chem 285:29231–29238CrossRefPubMedPubMedCentralGoogle Scholar
  35. Trempe JF, Fon EA (2013) Structure and function of Parkin, PINK1, and DJ-1, the three musketeers of neuroprotection. Front Neurol 4:38CrossRefPubMedPubMedCentralGoogle Scholar
  36. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, Janakiraman M, Schultz N, Hanrahan AJ, Pao W, Ladanyi M, Sander C, Heguy A, Holland EC, Paty PB, Mischel PS, Liau L, Cloughesy TF, Mellinghoff IK, Solit DB, Chan TA (2010) Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42:77–82CrossRefPubMedPubMedCentralGoogle Scholar
  37. Visintin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12:372–377CrossRefPubMedGoogle Scholar
  38. Wen PY, Kesari S (1999) Malignant gliomas in adults. N Engl J Med 359:492–507CrossRefGoogle Scholar
  39. Winklhofer KF (2014) Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol 24:332–341CrossRefPubMedGoogle Scholar
  40. Xu L, Lin D, Yin D, Koeffler HP (2013) An emerging role of PARK2 in cancer. J Mol Med 92:31–42CrossRefPubMedGoogle Scholar
  41. Yang YX, Muqit MK, Latchman DS (2006) Induction of Parkin expression in the presence of oxidative stress. Eur J Neurosci 24:1366–1372CrossRefPubMedGoogle Scholar
  42. Yeo CW, Ng FS, Chai C, Tan JM, Koh GR, Chong YK, Koh LW, Foong CS, Sandanaraj E, Holbrook JD, Ang BT, Takahashi R, Tang C, Lim KL (2012) Parkin pathway activation mitigates glioma cell proliferation and predicts patient survival. Cancer Res 72:2543–2553Google Scholar
  43. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618CrossRefPubMedGoogle Scholar
  44. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Grazia Maugeri
    • 1
  • Agata Grazia D’Amico
    • 1
    • 2
  • Rita Reitano
    • 1
  • Salvatore Saccone
    • 3
  • Concetta Federico
    • 3
  • Sebastiano Cavallaro
    • 4
  • Velia D’Agata
    • 1
    Email author
  1. 1.Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
  2. 2.San Raffaele Telematic University of RomeRomeItaly
  3. 3.Section of Animal Biology, Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
  4. 4.Functional Genomics Unit, Institute of Neurological SciencesItalian National Research CouncilCataniaItaly

Personalised recommendations