Advertisement

Cell and Tissue Research

, Volume 364, Issue 2, pp 345–355 | Cite as

Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus

  • Lisha LiEmail author
  • Furong Li
  • Feng Gao
  • Yali Yang
  • Yuanyuan Liu
  • Pingping Guo
  • Yulin Li
Regular Article

Abstract

Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ.

Keywords

Intrapancreatic transplantation Mesenchymal stem cells Islet regeneration Type 1 diabetes mellitus Rat 

Notes

Acknowledgments

The authors thank Professor Hui Qi in the Clinical Medicine Research Center, Shenzhen People’s Hospital for providing technical assistance and advice.

Compliance with ethical standards

Conflicts of interest

The authors declare no potential conflicts of interest.

References

  1. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, Kronenberg HM, Scadden DT (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243CrossRefPubMedGoogle Scholar
  3. Aguayo-Mazzucato C, Bonner-Weir S (2010) Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 6:139–148CrossRefPubMedGoogle Scholar
  4. Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555CrossRefPubMedPubMedCentralGoogle Scholar
  5. Attali M, Stetsyuk V, Basmaciogullari A, Aiello V, Zanta-Boussif MA, Duvillie B, Scharfmann R (2007) Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 56:1248–1258CrossRefPubMedGoogle Scholar
  6. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841CrossRefPubMedGoogle Scholar
  7. Bonner-Weir S, Sharma A (2002) Pancreatic stem cells. J Pathol 197:519–526CrossRefPubMedGoogle Scholar
  8. Bouwens L, Houbracken I, Mfopou JK (2013) The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol 9:598–606CrossRefPubMedGoogle Scholar
  9. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73CrossRefPubMedGoogle Scholar
  10. Daley GQ (2012) The promise and perils of stem cell therapeutics. Cell Stem Cell 10:740–749CrossRefPubMedPubMedCentralGoogle Scholar
  11. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001CrossRefPubMedGoogle Scholar
  12. Duvillie B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R (2006) The mesenchyme controls the timing of pancreatic beta-cell differentiation. Diabetes 55:582–589CrossRefPubMedGoogle Scholar
  13. Edsbagge J, Johansson JK, Esni F, Luo Y, Radice GL, Semb H (2005) Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. Development 132:1085–1092CrossRefPubMedGoogle Scholar
  14. Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P (2012) The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 30:1664–1674CrossRefPubMedGoogle Scholar
  15. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692CrossRefPubMedPubMedCentralGoogle Scholar
  17. Frank MH, Sayegh MH (2004) Immunomodulatory functions of mesenchymal stem cells. Lancet 363:1411–1412CrossRefPubMedGoogle Scholar
  18. Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT (1996) Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 122:439–447PubMedGoogle Scholar
  19. Guz Y, Nasir I, Teitelman G (2001) Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 142:4956–4968PubMedGoogle Scholar
  20. Hardikar AA, Lees JG, Sidhu KS, Colvin E, Tuch BE (2006) Stem-cell therapy for diabetes cure: how close are we? Curr Stem Cell Res Ther 1:425–436CrossRefPubMedGoogle Scholar
  21. Hasegawa Y, Ogihara T, Yamada T, Ishigaki Y, Imai J, Uno K, Gao J, Kaneko K, Ishihara H, Sasano H, Nakauchi H, Oka Y, Katagiri H (2007) Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology 148:2006–2015CrossRefPubMedGoogle Scholar
  22. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770CrossRefPubMedGoogle Scholar
  23. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jacquemin P, Yoshitomi H, Kashima Y, Rousseau GG, Lemaigre FP, Zaret KS (2006) An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290:189–199CrossRefPubMedGoogle Scholar
  25. Jensen J (2004) Gene regulatory factors in pancreatic development. Dev Dyn 229:176–200CrossRefPubMedGoogle Scholar
  26. Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21CrossRefPubMedGoogle Scholar
  27. Kim SK, Hebrok M (2001) Intercellular signals regulating pancreas development and function. Genes Dev 15:111–127CrossRefPubMedGoogle Scholar
  28. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631CrossRefPubMedGoogle Scholar
  30. Li L, Li F, Qi H, Feng G, Yuan K, Deng H, Zhou H (2008) Coexpression of Pdx1 and betacellulin in mesenchymal stem cells could promote the differentiation of nestin-positive epithelium-like progenitors and pancreatic islet-like spheroids. Stem Cells Dev 17:815–823CrossRefPubMedGoogle Scholar
  31. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA (2004) Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53:91–98CrossRefPubMedGoogle Scholar
  32. Napoli C, William-Ignarro S, Byrns R, Balestrieri ML, Crimi E, Farzati B, Mancini FP, de Nigris F, Matarazzo A, D’Amora M, Abbondanza C, Fiorito C, Giovane A, Florio A, Varricchio E, Palagiano A, Minucci PB, Tecce MF, Giordano A, Pavan A, Ignarro LJ (2008) Therapeutic targeting of the stem cell niche in experimental hindlimb ischemia. Nat Clin Pract Cardiovasc Med 5:571–579CrossRefPubMedGoogle Scholar
  33. Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12:126–131CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22:1998–2021CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  36. Potapova IA et al (2007) Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 25:1761–1768CrossRefPubMedGoogle Scholar
  37. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rose MI, Crisera CA, Colen KL, Connelly PR, Longaker MT, Gittes GK (1999) Epithelio-mesenchymal interactions in the developing mouse pancreas: morphogenesis of the adult architecture. J Pediatr Surg 34:774–780CrossRefPubMedGoogle Scholar
  39. Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57:3099–3107CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sordi V (2009) Mesenchymal stem cell homing capacity. Transplantation 87:S42–S45CrossRefPubMedGoogle Scholar
  41. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427CrossRefPubMedGoogle Scholar
  42. Teng C, Guo Y, Zhang H, Zhang H, Ding M, Deng H (2007) Identification and characterization of label-retaining cells in mouse pancreas. Differentiation 75:702–712CrossRefPubMedGoogle Scholar
  43. Todd JA (2009) Stem cells and a cure for type 1 diabetes? Proc Natl Acad Sci U S A 106:15523–15524CrossRefPubMedPubMedCentralGoogle Scholar
  44. Uccelli A, Pistoia V, Moretta L (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28:219–226CrossRefPubMedGoogle Scholar
  45. Urban VS, Kiss J, Kovács J, Gócza E, Vas V, Monostori E, Uher F (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253CrossRefPubMedGoogle Scholar
  46. Vija L, Farge D, Gautier JF, Vexiau P, Dumitrache C, Bourgarit A, Verrecchia F, Larghero J (2009) Mesenchymal stem cells: stem cell therapy perspectives for type 1 diabetes. Diabetes Metab 35:85–93CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lisha Li
    • 1
    Email author
  • Furong Li
    • 2
  • Feng Gao
    • 3
  • Yali Yang
    • 2
  • Yuanyuan Liu
    • 1
  • Pingping Guo
    • 1
  • Yulin Li
    • 1
  1. 1.The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of MedicineJilin UniversityChangchunPeople’s Republic of China
  2. 2.The Second Clinical Medical College (Shenzhen People’s Hospital)Jinan UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of General SurgeryBaoan Central Hospital of ShenzhenShenzhenPeople’s Republic of China

Personalised recommendations