Cell and Tissue Research

, Volume 364, Issue 1, pp 43–57 | Cite as

Neuroanatomical relationships between FMRFamide-immunoreactive components of the nervus terminalis and the topology of olfactory bulbs in teleost fish

  • Biagio D’Aniello
  • Gianluca Polese
  • Luciano Luongo
  • Anna Scandurra
  • Laura Magliozzi
  • Massimo Aria
  • Claudia Pinelli
Regular Article

Abstract

The nervus terminalis (NT) is the most anterior of the vertebrate cranial nerves. In teleost fish, the NT runs across all olfactory components and shows high morphological variability within this taxon. We compare the anatomical distribution, average number and size of the FMRFamide-immunoreactive (ir) NT cells of fourteen teleost species with different positions of olfactory bulbs (OBs) with respect to the ventral telencephalic area. Based on the topology of the OBs, three different neuroanatomical organizations of the telencephalon can be defined, viz., fish having sessile (Type I), pseudosessile (short stalked; Type II) or stalked (Type III) OBs. Type III topology of OBs appears to be a feature associated with more basal species, whereas Types I and II occur in derived and in basal species. The displacement of the OBs is positively correlated with the peripheral distribution of the FMRFamide-ir NT cells. The number of cells is negatively correlated with the size of the cells. A dependence analysis related to the type of OB topology revealed a positive relationship with the number of cells and with the size of the cells, with Type I and II topologies of OBs showing significantly fewer cells and larger cells than Type III. A dendrogram based on similarities obtained by taking into account all variables under study, i.e., the number and size of the FMRFamide-ir NT cells and the topology of OBs, does not agree with the phylogenetic relationships amongst species, suggesting that divergent or convergent evolutionary phenomena produced the olfactory components studied.

Keywords

Nervus terminalis Nucleus olfactoretinalis Brain FMRFamide Fish 

References

  1. Barton RA, Harvey PH (2000) Mosaic evolution of brain structures in mammals. Nature 405:1055–1058CrossRefPubMedGoogle Scholar
  2. Batten TFC, Cambre ML, Moons L, Vandesande F (1990) Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J Comp Neurol 302:893–919CrossRefPubMedGoogle Scholar
  3. Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton Ii JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013) The tree of life and a new classification of bony fishes. PLoS Curr 18:5Google Scholar
  4. Biju KC, Singru PS, Schreibman MP, Subhedar N (2003) Reproduction phase-related expression of GnRH-like immunoreactivity in the olfactory receptor neurons, their projections to the olfactory bulb and in the nervus terminalis in the female Indian major carp Cirrhinus mrigala (Ham.). Gen Comp Endocrinol 133:358–367CrossRefPubMedGoogle Scholar
  5. Bonn U, König B (1988) FMRFamide-like immunoreactivity in Brain and pituitary of Xenotoca-eisenii: (Cyprinidontoformes, Teleostei). J Hirnforsch 29:121–131PubMedGoogle Scholar
  6. Bonn U, König B (1989a) FMRFamide immunoreactivity in the brain and pituitary of Carassius auratus (Cyprinidae, Teleostei). J Hirnforsch 30:361–370PubMedGoogle Scholar
  7. Bonn U, König B (1989b) FMRFamide-like immunoreactivity in the brain and pituitary of the teleost—Eigenmannia lineata (Gymnotiformes). Z Mikrosk Anat Forsch 103:221–236PubMedGoogle Scholar
  8. Brookover C, Jackson TS (1911) The olfactory nerve and the nervus terminalis of Ameiurus. J Comp Neurol 21:237–259CrossRefGoogle Scholar
  9. Castro A, Becerra M, Anadón R, Manso MJ (2001) Distribution and development of FMRFamide-like immunoreactive neuronal systems in the brain of the brown trout, Salmo trutta fario. J Comp Neurol 440:43–64CrossRefPubMedGoogle Scholar
  10. Chiba A (1997) Co-localization of gonadotropin-releasing hormone (GnRH)-, neuropeptide Y (NPY)-, and molluscan cardioexcitatory tetrapeptide (FMRFamide)-like immunoreactivities in the ganglion cells of the terminal nerve of the masu salmon. Fish Sci 63:153–154Google Scholar
  11. Chiba A, Sohn YC, Honma Y (1996) Immunohistochemical and ultrastructural characterization of the terminal nerve ganglion cells of the ayu, Plecoglossus altivelis (Salmoniformes, Teleostei). Anat Rec 246:549–556CrossRefPubMedGoogle Scholar
  12. D’Aniello B, Luongo L, Rastogi RK, di Meglio M, Pinelli C (2015) Tract-tracing study of the extrabulbar olfactory projections in the brain of some teleosts. Microsc Res Tech 78:268–276CrossRefPubMedGoogle Scholar
  13. de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409:710–714CrossRefPubMedGoogle Scholar
  14. Eifert C, Farnworth M, Schulz-Mirbach T, Riesch R, Bierbach D, Klaus S, Wurster A, Tobler M, Streit B, Indy JR, Arias-Rodriguez L, Plath M (2014) Brain size variation in extremophile fish: local adaptation vs. phenotypic plasticity. J Zool 295:143–153CrossRefGoogle Scholar
  15. Eisthen HL, Delay RJ, Wirsig-Wiechmann CR, Dionne VE (2000) Neuromodulatory effects of gonadotropin releasing hormone on olfactory receptor neurons. J Neurosci 20:3947–3955PubMedGoogle Scholar
  16. Ekström P, Honkanen T, Ebbesson SO (1988) FMRFamide-like immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ. Brain Res 460:68–75CrossRefPubMedGoogle Scholar
  17. Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584CrossRefPubMedGoogle Scholar
  18. Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:298–308CrossRefGoogle Scholar
  19. Fiorentino M, D’Aniello B, Joss J, Polese G, Rastogi RK (2002) Ontogenetic organization of the FMRFamide immunoreactivity in the nervus terminalis of the lungfish, Neoceratodus forsteri. J Comp Neurol 450:115–121CrossRefPubMedGoogle Scholar
  20. Fritsch G (1878) Untersuchungen über den feineren Bau des Fischgehirns mit besonderer Berücksichtigung der Homologien bei anderen Wirbelthierklassen. Verlag der Gutmann’schen Buchhandlung, BerlinGoogle Scholar
  21. Fujii K, Kobayashi H (1992) FMRFamide-like immunoreactivity in the brain and pituitary of the goldfish, Carassius auratus. Ann Anat 174:217–222CrossRefPubMedGoogle Scholar
  22. Gonda A, Herczeg G, Merilä J (2009) Adaptative brain size divergence in nine-spined sticklebacks (Pungitius pungitius)? J Evol Biol 22:1721–1726CrossRefPubMedGoogle Scholar
  23. Gonda A, Herczeg G, Merilä J (2011) Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius)—local adaptation or environmentally induced variation? BMC Evol Biol 11:75–77CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gonda A, Välimäki K, Herczeg G, Merilä J (2012) Brain development and predation: plastic responses depend on evolutionary history. Biol Lett 8:249–252CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gonda A, Herczeg G, Merilä J (2013) Evolutionary ecology of intraspecific brain size variation: a review. Ecol Evol 3:2751–2764CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gonzalez-Voyer A, Winberg S, Kolm N (2009) Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes. BMC Evol Biol 9:238CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gonzalez-Voyer A, Kolm N, Iwaniuk A (2010) Sex, ecology and the brain: evolutionary correlates of brain structure volumes in Tanganyikan cichlids. PLoS ONE 5:e14355CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hager R, Lu L, Rosen GD, Williams RW (2012) Genetic architecture supports mosaic brain evolution and independent brain-body size regulation. Nat Commun 3:1079CrossRefPubMedPubMedCentralGoogle Scholar
  29. Holmgren N, van der Horst CJ (1925) Contribution to the morphology of the brain of Ceratodus. Acta Zool 6:59–165CrossRefGoogle Scholar
  30. Huber R, van Staaden MJ, Kaufman LS, Liem KF (1997) Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav Evol 50:167–182CrossRefPubMedGoogle Scholar
  31. Jadhao AG, D’Aniello B, Malz CR, Pinelli C, Meyer DL (2001) Intrasexual and intersexual dimorphisms of the red salmon prosencephalon. Cell Tissue Res 304:121–140CrossRefPubMedGoogle Scholar
  32. Kawai T, Oka Y, Eisthen H (2009) The role of the terminal nerve and GnRH in olfactory system neuromodulation. Zool Sci 26:669–680CrossRefPubMedGoogle Scholar
  33. Kihslinger RL, Lema SC, Nevitt GA (2006) Environmental rearing conditions produce forebrain differences in wild Chinook salmon Oncorhynchus tshawytscha. Comp Biochem Physiol 145:145–151CrossRefGoogle Scholar
  34. Kim MH, Oka Y, Amano M, Kobayashi M, Okuzawa K, Hasegawa Y, Kawashima S, Suzuki Y, Aida K (1995) Immunocytochemical localization of sGnRH and cGnRH-II in the brain of goldfish, Carassius auratus. J Comp Neurol 356:72–82CrossRefPubMedGoogle Scholar
  35. Kotrschal K, van Staaden M, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408CrossRefGoogle Scholar
  36. Kotrschal A, Rogell B, Maklakov AA, Kolm N (2012) Sex-specific plasticity in brain morphology depends on social environment of the guppy, Poecilia reticulata. Behav Ecol Sociobiol 66:1485–1492CrossRefGoogle Scholar
  37. Kyle AL, Luo BG, Magnus TH, Stell WK (1995) Substance P-, F8Famide-, and A18Famide-like immunoreactivity in the nervus terminalis and retina of the goldfish Carassius auratus. Cell Tissue Res 280:605–615CrossRefPubMedGoogle Scholar
  38. Lecchini D, Lecellier G, Lanyon RG, Holles S, Poucet B, Duran E (2014) Variation in brain organization of coral reef fish larvae according to life history traits. Brain Behav Evol 83:17–30CrossRefPubMedGoogle Scholar
  39. Lema SC, Hodges MJ, Marchetti MP, Nevitt GA (2005) Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate. Comp Biochem Physiol 141:327–335CrossRefGoogle Scholar
  40. Magliulo-Cepriano L, Schreibman MP, Blüm V (1993) The distribution of immunoreactive FMRF-amide, neurotensin, and galanin in the brain and pituitary gland of three species of Xiphophorus from birth to sexual maturity.Gen Comp Endocrinol 92:269–280CrossRefPubMedGoogle Scholar
  41. Mathieu M, Tagliafierro G, Bruzzone F, Vallarino M (2002) Neuropeptide tyrosine-like immunoreactive system in the brain, olfactory organ and retina of the zebrafish, Danio rerio, during development. Brain Res Dev Brain Res 139:255–265CrossRefPubMedGoogle Scholar
  42. Münz H, Claas B (1987) The terminal nerve and its development in teleost fishes. In: Demski LS, Schwanzel-Fukuda M (eds) The terminal nerve (nervus terminalis): structure, function, and evolution. New York Academy of Sciences, New York, pp 50–59Google Scholar
  43. Münz H, Stumpf WE, Jennes L (1981) LHRH systems in the brain of platyfish. Brain Res 221:1–13CrossRefPubMedGoogle Scholar
  44. Nieuwenhuys R (1967) Comparative anatomy of the olfactory centers and tracts. Prog Brain Res 23:1–64CrossRefPubMedGoogle Scholar
  45. Nieuwenhuys R, Donkelaar HJT, Nicholson C (1998) The central nervous system of vertebrates. Springer, HeidelbergCrossRefGoogle Scholar
  46. Ogawa S, Akiyama G, Kato S, Soga T, Sakuma Y, Parhar IS (2006) Immunoneutralization of gonadotropin-releasing hormone type-III suppresses male reproductive behavior of cichlids. Neurosci Lett 403:201–205CrossRefPubMedGoogle Scholar
  47. Oka Y, Ichikawa M (1990) Gonadotropin-releasing hormone (GnRH) immunoreactive system in the brain of the dwarf gourami (Colisa lalia) as revealed by light microscopic immunocytochemistry using a monoclonal antibody to common amino acid sequence of GnRH. J Comp Neurol 300:511–522CrossRefPubMedGoogle Scholar
  48. Oka Y, Munro AD, Lam TJ (1986) Retinopetal projections from a subpopulation of ganglion cells of the nervus terminalis in the dwarf gourami (Colisa lalia). Brain Res 367:341–345CrossRefPubMedGoogle Scholar
  49. Okuyama T, Yokoi S, Abel H, Isoe Y, Suehiro Y, Imada H, Tanaka M, Kawasaki T, Yuba S, Taniguchi Y, Kamei Y, Okubo K, Shimada A, Naruse K, Takeda H, Oka Y, Kubo T, Takeuchi H (2014) A neural mechanism underlying mating preferences for familiar individuals in Medaka fish. Science 343:91–94CrossRefPubMedGoogle Scholar
  50. Östholm T, Ekström P, Ebbesson SOE (1989) FMRFamide-like immunoreactive neurons in presmolt, postsmolt and adult coho salmon (Oncorhynchus kisutch). Anat Rec 223:86AGoogle Scholar
  51. Östholm T, Ekström P, Ebbesson SOE (1990) Distribution of FMRFamide-like immunoreactivity in the brain, retina and nervus terminalis of the sockeye salmon parr, Oncorhynchus nerka. Cell Tissue Res 261:403–418CrossRefPubMedGoogle Scholar
  52. Parhar IS (2002) Cell migration and evolutionary significance of GnRH subtypes. Prog Brain Res 141:3–17CrossRefPubMedGoogle Scholar
  53. Parhar IS, Pfaff DW, Schwanzel-Fukuda M (1996) Gonadotropin-releasing hormone gene expression in teleosts. Mol Brain Res 41:216–227CrossRefPubMedGoogle Scholar
  54. Pinelli C, D’Aniello B, Sordino P, Meyer DL, Fiorentino M, Rastogi RK (2000) Comparative immunocytochemical study of FMRFamide neuronal system in the brain of Danio rerio and Acipenser ruthenus during development. Dev Brain Res 119:195–208CrossRefGoogle Scholar
  55. Pinelli C, Rastogi RK, Scandurra A, Jadhao AG, Aria M, D’Aniello B (2014) A comparative cluster analysis of adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry in the brains of amphibians. J Comp Neurol 522:2980–3003CrossRefPubMedGoogle Scholar
  56. Pinkus F (1894) Über einen noch nicht beschriebenen Hirnnerven des Protopterus annectens. Anat Anz 9:562–566Google Scholar
  57. Pinkus F (1895) Die Hirnnerven des Protopterus annectens. Morph Arb 4:275–346Google Scholar
  58. Pollen AA, Dobberfuhl AP, Scace J, Igulu MM, Renn SC, Shumway CA, Hofmann HA (2007) Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behav Evol 70:21–39CrossRefPubMedGoogle Scholar
  59. Rama Krishna NS, Subhedar NK (1992) Distribution of FMRFamide-like immunoreactivity in the forebrain of the catfish, Clarias batrachus (Linn.). Peptides 13:183–191CrossRefGoogle Scholar
  60. Ridet JM, Bauchot R (1990) Analyse quantitative de l’encéphale des Téléostéens, caractères évolutifs et adaptifs de l’encéphalisation. II. Les grandes subdivisions encéphaliques. J Hirnforsch 31:433–458PubMedGoogle Scholar
  61. Rossi A, Basile A (1968) Comparative study of nervus terminalis ganglion cell topography in teleostei. Atti Accad Naz dei Lin 45:635Google Scholar
  62. Rusoff AC, Hapner SJ (1990a)Organization of retinopetal axons in the optic nerve of the cichlid fish, Herotilapia multispinosa.J Comp Neurol 294:418–430CrossRefPubMedGoogle Scholar
  63. Rusoff AC, Hapner SJ (1990b) Development of retinopetal projections in the cichlid fish, Herotilapia multispinosa.J Comp Neurol 294:431–442CrossRefPubMedGoogle Scholar
  64. Salas C, Broglio C, Duran E, Gomez A, Rodriguez F (2008) Spatial learning in fish. In: Menzel R (ed) Learning theory and behavior. Elsevier, Oxford, pp 499–528Google Scholar
  65. Schreibman MP, Halpern LR, Goos HJ, Margolis-Kazan H (1979) Identification of luteinizing hormone-releasing hormone (LH-RH) in the brain and the pituitary gland of a fish by immunocytochemistry. J Exp Zool 210:153–160CrossRefPubMedGoogle Scholar
  66. Sewertzoff AN (1902) Zur Entwicklungsgeschichte des Ceratodus forsteri. Anat Anz 21:593–608Google Scholar
  67. Springer AD (1983) Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis. J Comp Neurol 214:404–415CrossRefGoogle Scholar
  68. Stell WK, Walker SE, Chohan KS, Ball AK (1984) The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. Proc Natl Acad Sci U S A 81:940–944CrossRefPubMedPubMedCentralGoogle Scholar
  69. Stell WK, Walker SE, Ball AK (1987) Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes. Ann NY Acad Sci 519:80–96CrossRefPubMedGoogle Scholar
  70. Striedter GF (2005) Principles of brain evolution. Sinauer, SunderlandGoogle Scholar
  71. Szabo T, Blähser S, Denizot J-P, Ravaille-Véron M (1991) The olfactoretinalis system = terminal nerve? Neuroreport 2:73–76CrossRefPubMedGoogle Scholar
  72. Vecino E, Ekström P (1992) Colocalization of neuropeptide Y (NPY)-like and FMRFamide-like immunoreactivities in the brain of the Atlantic salmon (Salmo salar). Cell Tissue Res 270:435–442CrossRefPubMedGoogle Scholar
  73. von Bartheld CS, Meyer DL (1986) Tracing of single fibers of the nervus terminalis in the goldfish brain. Cell Tissue Res 245:143–158CrossRefGoogle Scholar
  74. von Bartheld CS, Meyer DL (1988) Central projections of the nervus terminalis in lampreys, lungfishes, and bichirs. Brain Behav Evol 32:151–159CrossRefGoogle Scholar
  75. Walker SE, Stell WK (1986) Gonadotropin-releasing hormone (GnRH), molluscan cardioexcitatory peptide (FMRFamide), enkephalin and related neuropeptides affect goldfish retinal ganglion cell activity. Brain Res 384:262–273CrossRefPubMedGoogle Scholar
  76. Whitlock KE (2004) Development of the nervus terminalis: origin and migration. Microsc Res Tech 65:2–12CrossRefPubMedGoogle Scholar
  77. Wirsig CR, Leonard CM (1987) Terminal nerve damage impairs the mating behavior of the male hamster. Brain Res 417:293–303CrossRefPubMedGoogle Scholar
  78. Wirsig-Wiechmann CR, Oka Y (2002) The terminal nerve ganglion cells project to the olfactory mucosa in the dwarf gourami. Neurosci Res 44:337–341CrossRefPubMedGoogle Scholar
  79. Yamamoto N, Oka Y, Amano M, Aida K, Hasegawa Y, Kawashima S (1995) Multiple gonadotropin-releasing hormone (GnRH)-immunoreactive systems in the brain of the dwarf gourami, Colisa lalia: immunohistochemistry and radioimmunoassay. J Comp Neurol 355:354–368CrossRefPubMedGoogle Scholar
  80. Yamamoto N, Oka Y, Kawashima S (1997) Lesions of gonadotropin-releasing hormone-immunoreactive terminal nerve cells: effects on the reproductive behavior of male dwarf gouramis. Neuroendocrinology 65:403–412CrossRefPubMedGoogle Scholar
  81. Yopak KE, Lisney TJ, Darlington RB, Collin SP, Montgomery JC, Finlay BL (2010) A conserved pattern of brain scaling from sharks to primates. Proc Natl Acad Sci U S A 107:12946–12951CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Naples “Federico II”NaplesItaly
  2. 2.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesSecond University of NaplesCasertaItaly
  3. 3.Department of Biological and Technological ScienceUniversity of SalentoLecceItaly
  4. 4.Department of Economics and Statistical ScienceUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations