Advertisement

Cell and Tissue Research

, Volume 363, Issue 3, pp 635–648 | Cite as

Olfactory pathway in Xibalbanus tulumensis: remipedian hemiellipsoid body as homologue of hexapod mushroom body

  • Torben Stemme
  • Thomas M. Iliffe
  • Gerd Bicker
Regular Article

Abstract

The Remipedia have been proposed to be the crustacean sister group of the Hexapoda. These blind cave animals heavily rely on their chemical sense and are thus rewarding subjects for the analysis of olfactory pathways. The evolution of these pathways as a character for arthropod phylogeny has recently received increasing attention. Here, we investigate the situation in Xibalbanus tulumensis by focal dye injections and immunolabelling of the catalytic subunit of the cAMP-dependent protein kinase (DC0), an enzyme particularly enriched in insect mushroom bodies. DC0 labelling of the hemiellipsoid body suggests its subdivision into a cap-like and a core neuropil. Immunofluorescence of the enzyme glutamic acid decarboxylase (GAD), which synthesizes γ-aminobutyric acid (GABA), has revealed a cluster of GABAergic interneurons in the hemiellipsoid body, reminiscent of the characteristic feedback neurons of the mushroom body. Thus, the hemiellipsoid body of Xibalbanus shares many of the characteristics of insect mushroom bodies. Nevertheless, the general neuroanatomy of the olfactory pathway in the Remipedia strongly corresponds to the malacostracan ground pattern. Given that the Remipedia are probably the sister group of the Hexapoda, the phylogenetic appearance of the typical neuropilar compartments in the insect mushroom body has to be assigned to the origins of the Hexapoda.

Keywords

Brain Comparative neuroanatomy Morphology Lateral protocerebrum Tetraconata Xibalbanus tulumensis 

Notes

Acknowledgments

We thank Dr. Daniel Kalderon for the gift of the DC0 antibody. We are grateful to Hannah Scheiblich for sharing her expertise in western blot analysis with us. René Eickhoff and Michael Stern contributed stimulating discussions and helpful comments. A collecting permit for Remipedia was issued by SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) to Thomas M. Iliffe via a permit to Dr. Fernando Alvarez (FAUT-0104). The landowner kindly gave permission to collect specimens on the site.

References

  1. Andrew DR, Brown SM, Strausfeld NJ (2012) The minute brain of the copepod Tigriopus californicus supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems. J Comp Neurol 520:3446–3470CrossRefPubMedGoogle Scholar
  2. Becker KF, Schott C, Hipp S, Metzger V, Porschewski P, Beck R, Nährig J, Becker I, Höfler H (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211:370–378CrossRefPubMedGoogle Scholar
  3. Bicker G, Schäfer S, Kingan T (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397CrossRefPubMedGoogle Scholar
  4. Böhm A, Szucsich NU, Pass G (2012) Brain anatomy in Diplura (Hexapoda). Front Zool 9:26PubMedCentralCrossRefPubMedGoogle Scholar
  5. Brenneis G, Richter S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea)—an immunohistochemical study and 3D-reconstruction. J Morphol 271:169–189PubMedGoogle Scholar
  6. Brotz TM, Bochenek B, Aronstein K, Ffrench-Constant RH, Borst A (1997) γ-Aminobutyric acid receptor distribution in the mushroom bodies of a fly (Calliphora erythrocephala): a functional subdivision of Kenyon cells? J Comp Neurol 383:42–48CrossRefPubMedGoogle Scholar
  7. Brown S, Wolff G (2012) Fine structural organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus. J Comp Neurol 520:2847–2863CrossRefPubMedGoogle Scholar
  8. Christie AE (2014) Prediction of the first neuropeptides from a member of the Remipedia (Arthropoda, Crustacea). Gen Comp Endocrinol 201:74–86CrossRefPubMedGoogle Scholar
  9. Eickhoff R, Bicker G (2012) Developmental expression of cell recognition molecules in the mushroom body and antennal lobe of the locust Locusta migratoria. J Comp Neurol 520:2021–2040CrossRefPubMedGoogle Scholar
  10. Eisenhardt D, Fiala A, Braun P, Rosenboom H, Kress H, Ebert PR, Menzel R (2001) Cloning of a catalytic subunit of cAMP-dependent protein kinase from the honeybee (Apis mellifera) and its localization in the brain. Insect Mol Biol 10:173–181CrossRefPubMedGoogle Scholar
  11. Ertas B, Reumont BM von, Wägele JW, Misof B, Burmester T (2009) Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol Biol Evol 26:2711–2718Google Scholar
  12. Fanenbruck M, Harzsch S (2005) A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships. Arthropod Struct Dev 34:343–378CrossRefGoogle Scholar
  13. Fanenbruck M, Harzsch S, Wägele JW (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci U S A 101:3868–3873PubMedCentralCrossRefPubMedGoogle Scholar
  14. Farris SM (2005) Evolution of insect mushroom bodies: old clues, new insights. Arthropod Struct Dev 34:211–234CrossRefGoogle Scholar
  15. Farris SM, Sinakevitch I (2003) Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct Dev 32:79–101CrossRefPubMedGoogle Scholar
  16. Farris SM, Abrams AI, Strausfeld NJ (2004) Development and morphology of Class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. J Comp Neurol 474:325–339CrossRefPubMedGoogle Scholar
  17. Fritsch M, Richter S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): an immunohistochemical survey. J Morphol 271:1457–1481CrossRefPubMedGoogle Scholar
  18. Ganeshina O, Menzel R (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437:335–349CrossRefPubMedGoogle Scholar
  19. Grunewald B (1999) Morphology of feedback neurons in the mushroom body of the honey bee, Apis mellifera. J Comp Neurol 404:114–126CrossRefPubMedGoogle Scholar
  20. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, BerlinGoogle Scholar
  21. Hanström B (1947) The brain, the sense organs, and the incretory organs of the head in the Crustacea Malacostraca. Kungl Fysiografiska Sallskapets Handlingar NF 58:1–44Google Scholar
  22. Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 46:182–194CrossRefGoogle Scholar
  23. Harzsch S (2007) The architecture of the nervous system provides important characters for phylogenetic reconstructions: examples from the Arthropoda. Species Phylogeny Evol 1:33–57Google Scholar
  24. Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484PubMedGoogle Scholar
  25. Heuer CM, Loesel R (2008) Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida). Cell Tissue Res 331:713–724CrossRefPubMedGoogle Scholar
  26. Heuer CM, Müller CH, Todt C, Loesel R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7:13PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hoenemann M, Neiber MT, Humphreys WF, Iliffe TM, Li D, Schram FR, Koenemann S (2013) Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. J Crust Biol 33:603–619CrossRefGoogle Scholar
  28. Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209CrossRefPubMedGoogle Scholar
  29. Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24CrossRefPubMedGoogle Scholar
  30. Kenning M, Harzsch S (2013) Brain anatomy of the marine isopod Saduria entomon Linnaeus, 1758 (Valvifera, Isopoda) with special emphasis on the olfactory pathway. Front Neuroanat 7:32PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kenning M, Müller C, Wirkner CS, Harzsch S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz J Comp Zool 252:319–336CrossRefGoogle Scholar
  32. Kubrakiewicz J, Jaglarz MK, Iliffe TM, Bilinski SM, Koenemann S (2012) Ovary structure and early oogenesis in the remipede, Godzilliognomus frondosus (Crustacea, Remipedia): phylogenetic implications. Zoology 115:261–269CrossRefPubMedGoogle Scholar
  33. Lane ME, Kalderon D (1993) Genetic investigation of cAMP-dependent protein kinase function in Drosophila melanogaster development. Genes Dev 7:1229–1243CrossRefPubMedGoogle Scholar
  34. Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol 372:487–514CrossRefPubMedGoogle Scholar
  35. Loesel R, Richter S (2014) Neurophylogeny—from description to character analysis. In: Wägele JW, Bartholomäus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. De Gruyter, Berlin, pp 505–514Google Scholar
  36. Matsubayashi Y, Iwai L, Kawasakia H (2008) Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J Neurosci Methods 174:71–81CrossRefPubMedGoogle Scholar
  37. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, Reumont BM von, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767Google Scholar
  38. Moura G, Christoffersen ML (1996) The system of the mandibulate arthropods: Tracheata and Remipedia as sister groups, “Crustacea” nonmonophyletic. J Comp Biol 1:95–113Google Scholar
  39. Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honey-bees. Neuron 27:159–168CrossRefPubMedGoogle Scholar
  40. Nishino H, Mizunami M (1998) Giant input neurons of the mushroom body: intracellular recording and staining in the cockroach. Neurosci Lett 246:57–60CrossRefPubMedGoogle Scholar
  41. Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK (2012) Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement and pancrustacean phylogeny. Mol Biol Evol 30:215–233CrossRefPubMedGoogle Scholar
  42. Papadopoulou M, Cassenaer S, Nowotny T, Laurent G (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332:721–725PubMedCentralCrossRefPubMedGoogle Scholar
  43. Regier JC, Shultz JW, Ganley AR, Hussey A, Shi D, Ball B, Zwick A, Stajich JE, Cummings MP, Martin JW, Cunningham CW (2008) Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of proteincoding nuclear gene sequence. Syst Biol 57:920–938CrossRefPubMedGoogle Scholar
  44. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083CrossRefPubMedGoogle Scholar
  45. Reumont BM von, Jenner RA, Wills MA, Dell'ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045Google Scholar
  46. Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133Google Scholar
  47. Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev 34:257–299CrossRefGoogle Scholar
  48. Schürmann FW (2000) Acetylcholine, GABA, glutamate and NO as putative transmitters indicated by immunocytochemistry in the olfactory mushroom body system of the insect brain. Acta Biol Hung 51:355–362PubMedGoogle Scholar
  49. Sjöholm M, Sinakevitch I, Strausfeld NJ, Ignell R, Hansson BS (2006) Functional division of intrinsic neurons in the mushroom bodies of male Spodoptera littoralis revealed by antibodies against aspartate, taurine, FMRF-amide, Mas-allatotropin and DC0. Arthropod Struct Dev 35:153–168CrossRefPubMedGoogle Scholar
  50. Skoulakis EMC, Kalderon D, Davis RL (1993) Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11:197–208CrossRefPubMedGoogle Scholar
  51. Stapleton A, Tyrer NM, Goosey MW, Cooper ME (1989) A rapid purification of L-glutamic acid decarboxylase from the brain of the locust Schistocerca gregaria. J Neurochem 53:1126–1133CrossRefPubMedGoogle Scholar
  52. Stegner MEJ, Richter S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev 40:221–243CrossRefPubMedGoogle Scholar
  53. Stegner MEJ, Stemme T, Iliffe TM, Richter S, Wirkner CS (2015) The brain in three crustaceans from cavernous darkness. BMC Neurosci 16:19PubMedCentralCrossRefPubMedGoogle Scholar
  54. Stemme T, Iliffe TM, Bicker G, Harzsch S, Koenemann S (2012) Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol Biol 12:168PubMedCentralCrossRefPubMedGoogle Scholar
  55. Stemme T, Iliffe TM, Reumont BM von, Koenemann S, Harzsch S, Bicker G (2013) Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda? BMC Evol Biol 13:119Google Scholar
  56. Stemme T, Eickhoff R, Bicker G (2014) Olfactory projection neuron pathways in two species of marine Isopoda (Peracarida, Malacostraca, Crustacea). Tissue Cell 46:260–263CrossRefPubMedGoogle Scholar
  57. Stern M (2009) The PM1 neurons, movement sensitive centrifugal visual brain neurons in the locust: anatomy, physiology, and modulation by identified octopaminergic neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:123–137CrossRefPubMedGoogle Scholar
  58. Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc Biol Sci 276:1929–1937PubMedCentralCrossRefPubMedGoogle Scholar
  59. Strausfeld NJ, Li YS (1999) Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. J Comp Neurol 409:603–625CrossRefPubMedGoogle Scholar
  60. Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291CrossRefPubMedGoogle Scholar
  61. Sullivan JM, Beltz BS (2001) Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441:9–22CrossRefPubMedGoogle Scholar
  62. Sullivan JM, Beltz BS (2004) Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol 470:25–38CrossRefPubMedGoogle Scholar
  63. Tomer R, Denes AS, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:800–809CrossRefPubMedGoogle Scholar
  64. Wolff GH, Strausfeld NJ (2015) Genealogical correspondence of mushroom bodies across invertebrate phyla. Curr Biol 25:38–44CrossRefPubMedGoogle Scholar
  65. Wolff G, Harzsch S, Hansson BS, Brown S, Strausfeld N (2012) Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol 520:2824–2846CrossRefPubMedGoogle Scholar
  66. Yamazaki Y, Nishikawa M, Mizunami M (1998) Three classes of GABA-like immunoreactive neurons in the mushroom body of the cockroach. Brain Res 788:80–86CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Cell BiologyUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Department of Marine BiologyTexas A&M University at GalvestonGalvestonUSA

Personalised recommendations