Advertisement

Cell and Tissue Research

, Volume 362, Issue 2, pp 269–279 | Cite as

Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering

  • Birgit Huber
  • Ann-Cathrin Volz
  • Petra J. KlugerEmail author
Review

Abstract

Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.

Keywords

Mature adipocytes Endothelial cells Co-culture Vascularized fatty tissue engineering Cross-talk 

References

  1. Abraham NG, Sodhi K, Silvis AM, Vanella L, Favero G, Rezzani R, Lee C, Zeldin DC, Schwartzman ML (2014) CYP2J2 targeting to endothelial cells attenuates adiposity and vascular dysfunction in mice fed a high-fat diet by reprogramming adipocyte phenotype. Hypertension 64:1352–1361PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adeghate E (2008) Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem 15:1851–1862PubMedCrossRefGoogle Scholar
  3. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429PubMedCentralPubMedCrossRefGoogle Scholar
  4. Aldhahi W, Hamdy O (2003) Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep 3:293–298PubMedCrossRefGoogle Scholar
  5. Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell response to fluid shear stress. Circ J 73:1983–1992PubMedCrossRefGoogle Scholar
  6. Aoki S, Toda S, Sakemi T, Sugihara H (2003) Coculture of endothelial cells and mature adipocytes actively promotes immature preadipocyte development in vitro. Cell Struct Funct 28:55–60PubMedCrossRefGoogle Scholar
  7. Aoki S, Udo K, Morimoto H, Ikeda S, Takezawa T, Uchihashi K, Nishijima-Matsunobu A, Noguchi M, Sugihara H, Toda S (2013) Adipose tissue behavior is distinctly regulated by neighboring cells and fluid flow stress: a possible role of adipose tissue in peritoneal fibrosis. J Artif Organs 16:322–331PubMedCrossRefGoogle Scholar
  8. Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M (2010) Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 110:564–572PubMedCrossRefGoogle Scholar
  9. Attané C, Daviaud D, Dray C, Dusaulcy R, Masseboeuf M, Prévot D, Carpéné C, Castan-Laurell I, Valet P (2011) Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol 46:21–28PubMedCrossRefGoogle Scholar
  10. Aubin K, Vincent C, Proulx M, Mayrand D, Fradette J (2015) Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products. Acta Biomater 11:333–345PubMedCrossRefGoogle Scholar
  11. Avram AS, Avram MM, James WD (2005) Subcutaneous fat in normal and diseased states. 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53:671–683PubMedCrossRefGoogle Scholar
  12. Blüher M, Fasshauer M, Tönjes A, Kratzsch J, Schön MR, Paschke R (2005) Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp Clin Endocrinol Diabetes 113:534–537PubMedCrossRefGoogle Scholar
  13. Boney CM, Moats-Staats BM, Stiles AD, D’Ercole AJ (1994) Expression of insulin-like growth factor-I (IGF-I) and IGF-binding proteins during adipogenesis. Endocrinology 135:1863–1868PubMedGoogle Scholar
  14. Briand N, Le Lay S, Sessa WC, Ferré P, Dugail I (2011) Distinct roles of endothelial and adipocyte caveolin-1 in macrophage infiltration and adipose tissue metabolic activity. Diabetes 60:448–453PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026PubMedCrossRefGoogle Scholar
  16. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, Rijn M van de, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628Google Scholar
  17. Chiu YC, Cheng MH, Uriel S, Brey EM (2011) Materials for engineering vascularized adipose tissue. J Tissue Viability 20:37–48PubMedCrossRefGoogle Scholar
  18. Choi JH, Gimble JM, Vunjak-Novakovic G, Kaplan DL (2010) Effects of hyperinsulinemia on lipolytic function of three-dimensional adipocyte/endothelial co-cultures. Tissue Eng Part C Methods 16:1157–1165PubMedCentralPubMedCrossRefGoogle Scholar
  19. Choi JH, Bellas E, Gimble JM, Vunjak-Novakovic G, Kaplan DL (2011) Lipolytic function of adipocyte/endothelial cocultures. Tissue Eng A 17:1437–1444CrossRefGoogle Scholar
  20. Christiaens V, Lijnen HR (2010) Angiogenesis and development of adipose tissue. Mol Cell Endocrinol 318:2–9PubMedCrossRefGoogle Scholar
  21. Coleman SR (2002) Hand rejuvenation with structural fat grafting. Plast Reconstr Surg 110:1731–1747PubMedCrossRefGoogle Scholar
  22. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118:108S–120SPubMedCrossRefGoogle Scholar
  23. Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG (1996) Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res 79:984–991PubMedCrossRefGoogle Scholar
  24. Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4:211–232PubMedCrossRefGoogle Scholar
  25. Daquinag AC, Souza GR, Kolonin MG (2012) Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 19:336–344PubMedCentralPubMedCrossRefGoogle Scholar
  26. DeLisser HM, Newman PJ, Albelda SM (1994) Molecular and functional aspects of PECAM-1/CD31. Immunol Today 15:490–495PubMedCrossRefGoogle Scholar
  27. Ebert R, Schwabe U (1973) Studies on the antilipolytic effect of adenosine and related compounds in isolated fat cells. Naunyn Schmiedeberg’s Arch Pharmacol 278:247–259CrossRefGoogle Scholar
  28. Egan JJ, Greenberg AS, Chang MK, Londos C (1990) Control of endogenous phosphorylation of the major cAMP-dependent protein kinase substrate in adipocytes by insulin and beta-adrenergic stimulation. J Biol Chem 265:18769–18775PubMedGoogle Scholar
  29. Eringa EC, Bakker W, Hinsbergh VW van (2012) Paracrine regulation of vascular tone, inflammation and insulin sensitivity by perivascular adipose tissue. Vasc Pharmacol 56:204–209Google Scholar
  30. Fortuño A, Rodríguez A, Gómez-Ambrosi J, Frühbeck G, Díez J (2003) Adipose tissue as an endocrine organ: role of leptin and adiponectin in the pathogenesis of cardiovascular diseases. J Physiol Biochem 59:51–60PubMedCrossRefGoogle Scholar
  31. Frühbeck G, Aguado M, Gómez-Ambrosi J, Martínez JA (1998) Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem Biophys Res Commun 250:99–102PubMedCrossRefGoogle Scholar
  32. Frühbeck G, Gómez-Ambrosi J, Muruzábal FJ, Burrell MA (2001) The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 280:E827–E847PubMedGoogle Scholar
  33. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J (2004) Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol 18:2024–2034PubMedCrossRefGoogle Scholar
  34. Gentile MT, Vecchione C, Marino G, Aretini A, Di Pardo A, Antenucci G, Maffei A, Cifelli G, Iorio L, Landolfi A, Frati G, Lembo G (2008) Resistin impairs insulin-evoked vasodilation. Diabetes 57:577–583PubMedCrossRefGoogle Scholar
  35. Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256PubMedCrossRefGoogle Scholar
  36. Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26:441–454PubMedCrossRefGoogle Scholar
  37. Goossens GH, Blaak EE, Saris WH, Baak MA van (2004) Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J Clin Endocrinol Metab 89:2690–2696Google Scholar
  38. Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346PubMedGoogle Scholar
  39. Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D (1992) Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 52:4113–4116PubMedGoogle Scholar
  40. Gustafson B (2010) Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 17:332–341PubMedCrossRefGoogle Scholar
  41. Hanjaya-Putra D, Bose V, Shen YI, Yee J, Khetan S, Fox-Talbot K, Steenbergen C, Burdick JA, Gerecht S (2011) Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:804–815PubMedCentralPubMedCrossRefGoogle Scholar
  42. Hardie LJ, Guilhot N, Trayhurn P (1996) Regulation of leptin production in cultured mature white adipocytes. Horm Metab Res 28:685–689PubMedCrossRefGoogle Scholar
  43. Hauner H, Röhrig K, Petruschke T (1995) Effects of epidermal growth factor (EGF), platele-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function. Eur J Clin Invest 25:90–96PubMedCrossRefGoogle Scholar
  44. Hausman GJ, Richardson RL (1983) Cellular and vascular development in immature rat adipose tissue. J Lipid Res 24:522–532PubMedGoogle Scholar
  45. Hebert TL, Wu X, Yu G, Goh BC, Halvorsen YD, Wang Z, Moro C, Gimble JM (2009) Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipos-derived stromal/stem cell proliferation and adipogenesis. J Tissue Eng Regen Med 3:553–561Google Scholar
  46. Hemmrich K, Heimburg D von (2006) Biomaterials for adipose tissue engineering. Expert Rev Med Devices 3:635–645Google Scholar
  47. Huber B, Borchers K, Tovar GE, Kluger PJ (2015) Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. J Biomater Appl (in press)Google Scholar
  48. Jernås M, Palming J, Sjöholm K, Jennische E, Svensson PA, Gabrielsson BG, Levin M, Sjögren A, Rudemo M, Lystig TC, Carlsson B, Carlsson LM, Lönn M (2006) Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J 20:1540–1542PubMedCrossRefGoogle Scholar
  49. Jones BH, Standridge MK, Moustaid N (1997) Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138:1512–1519PubMedGoogle Scholar
  50. Justesen J, Pedersen SB, Stenderup K, Kassem M (2004) Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo. Tissue Eng 10:381–391PubMedCrossRefGoogle Scholar
  51. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556PubMedCrossRefGoogle Scholar
  52. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286PubMedCentralPubMedCrossRefGoogle Scholar
  53. Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, Baas AS, Paramsothy P, Giachelli CM, Corson MA, Raines EW (2005) Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol 25:989–994PubMedCrossRefGoogle Scholar
  54. Kim S, Moustaid-Moussa N (2000) Secretory, endocrine and autocrine/paracrine function of the adipocyte. J Nutr 130:3110S–3115SPubMedGoogle Scholar
  55. Koolwijk P, Erck MG van, Vree WJ de, Vermeer MA, Weich HA, Hanemaaijer R, Hinsbergh VW van (1996) Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 132:1177–1188Google Scholar
  56. Lafontan M (2012) Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 302:C327–C359PubMedCrossRefGoogle Scholar
  57. Lai N, Jayaraman A, Lee K (2008) Enhanced proliferation of human umbilical vein endothelial cells and differentiation of 3T3-L1 adipocytes in coculture. Tissue Eng A 15:1053–1056CrossRefGoogle Scholar
  58. Langslow DR, Hales CN (1969) Lipolysis in chicken adipose tissue in vitro. J Endocrinol 43:285–294PubMedCrossRefGoogle Scholar
  59. Lee DE, Kehlenbrink S, Lee H, Hawkins M, Yudkin JS (2009) Getting the message across: mechanisms of physiological cross talk by adipose tissue. Am J Physiol Endocrinol Metab 296:E1210–E1229PubMedCrossRefGoogle Scholar
  60. Londos C, Brasaemle DL, Schultz CJ, Adler-Wailes DC, Levin DM, Kimmel AR, Rondinone CM (1999) On the control of lipolysis in adipocytes. Ann N Y Acad Sci 892:155–168PubMedCrossRefGoogle Scholar
  61. Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, Ryu J, Mugishima H (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222PubMedCrossRefGoogle Scholar
  62. Mattu HS, Randeva HS (2013) Role of adipokines in cardiovascular disease. J Endocrinol 216:T17–T36PubMedCrossRefGoogle Scholar
  63. Moule SK, Edgell NJ, Welsh GI, Diggle TA, Foulstone EJ, Heesom KJ, Proud CG, Denton RM (1995) Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J 311:595–601PubMedCentralPubMedCrossRefGoogle Scholar
  64. Moyes AJ, Khambata RS, Villar I, Bubb KJ, Baliga RS, Lumsden NG, Xiao F, Gane PJ, Rebstock AS, Worthington RJ, Simone MI, Mota F, Rivilla F, Vallejo S, Peiró C, Sánchez Ferrer CF, Djordjevic S, Caulfield MJ, MacAllister RJ, Selwood DL, Ahluwalia A, Hobbs AJ (2014) Endothelial C-type natriuretic peptide maintains vascular homeostasis. J Clin Invest 124:4039–4051PubMedCentralPubMedCrossRefGoogle Scholar
  65. Muller WA (2014) How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am J Pathol 184:886–896PubMedCentralPubMedCrossRefGoogle Scholar
  66. Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14:5–12PubMedCentralPubMedCrossRefGoogle Scholar
  67. Nakagawa K, Higashi Y, Sasaki S, Oshima T, Matsuura H, Chayama K (2002) Leptin causes vasodilation in humans. Hypertens Res 25:161–165PubMedCrossRefGoogle Scholar
  68. Nakajima I, Yamaguchi T, Ozutsumi K, Aso H (1998) Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation 63:193–200PubMedCrossRefGoogle Scholar
  69. Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 110:6712–6717PubMedCentralPubMedCrossRefGoogle Scholar
  70. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311PubMedCrossRefGoogle Scholar
  71. Ohno M, Cooke JP, Dzau VJ, Gibbons GH (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95:1363–1369PubMedCentralPubMedCrossRefGoogle Scholar
  72. Ono H, Oki Y, Bono H, Kano K (2011) Gene expression profiling in multipotent DFAT cells derived from mature adipocytes. Biochem Biophys Res Commun 407:562–567PubMedCrossRefGoogle Scholar
  73. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666PubMedCrossRefGoogle Scholar
  74. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935PubMedCentralPubMedCrossRefGoogle Scholar
  75. Pavelka M, Roth J (2010) Functional ultrastructure: atlas of tissue biology and pathology, 2nd edn. Springer, ViennaCrossRefGoogle Scholar
  76. Pellegrinelli V, Rouault C, Veyrie N, Clément K, Lacasa D (2013) Endothelial cells from visceral adipose tissue disrupt adipocyte functions in a three-dimensional setting: partial rescue by angiopoietin-1. Diabetes 63:535–549PubMedCrossRefGoogle Scholar
  77. Petruschke T, Röhrig K, Hauner H (1994) Transforming growth factor beta (TGF-beta) inhibits the differentiation of human adipocyte precursor cells in primary culture. Int J Obes Relat Metab Disord 18:532–536PubMedGoogle Scholar
  78. Pierleoni C, Verdenelli F, Castellucci M, Cinti S (1998) Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur J Histochem 42:183–188PubMedGoogle Scholar
  79. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663PubMedCrossRefGoogle Scholar
  80. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815PubMedCrossRefGoogle Scholar
  81. Podor TJ, Jirik FR, Loskutoff DJ, Carson DA, Lotz M (1989) Human endothelial cells produce IL-6. Lack of responses to exogenous IL-6. Ann N Y Acad Sci 557:374–387PubMedCrossRefGoogle Scholar
  82. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268PubMedCrossRefGoogle Scholar
  83. Rodbell M (1966) The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem 241:3909–3917PubMedGoogle Scholar
  84. Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose tissue: an update. Clin Endocrinol 64:355–365Google Scholar
  85. Ruggeri ZM (2003) Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 1:1335–1342PubMedCrossRefGoogle Scholar
  86. Rutkowski JM, Davis KE, Scherer PE (2009) Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J 276:5738–5746PubMedCentralPubMedCrossRefGoogle Scholar
  87. Schling P, Löffler G (2002) Cross talk between adipose tissue cells: impact on pathophysiology. News Physiol Sci 17:99–104PubMedGoogle Scholar
  88. Schwabe U, Ebert R, Erbler HC (1973) Adenosine release from isolated fat cells and its significance for the effects of hormones on cyclic 3′,5′-AMP levels and lipolysis. Naunyn Schmiedeberg’s Arch Pharmacol 276:133–148CrossRefGoogle Scholar
  89. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  90. Serra-Renom JM, Muñoz-Olmo JL, Serra-Mestre JM (2013) Fat grafting in breast reconstruction with expanders and prostheses in patients who have received radiotherapy. Plast Reconstr Surg 125:12–18CrossRefGoogle Scholar
  91. Sethi JK, Vidal-Puig AJ (2007) Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48:1253–1262PubMedCentralPubMedCrossRefGoogle Scholar
  92. Shigematsu M, Watanabe H, Sugihara H (1999) Proliferation and differentiation of unilocular fat cells in the bone marrow. Cell Struct Funct 24:89–100PubMedCrossRefGoogle Scholar
  93. Shih KC, Kwok CF, Ho LT (2000) Combined use of insulin and endothelin-1 causes decrease of protein expression of beta-subunit of insulin receptor, insulin receptor substrate-1, and insulin-stimulated glucose uptake in rat adipocytes. J Cell Biochem 78:231–240PubMedCrossRefGoogle Scholar
  94. Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, Boss O, Pernin A, Chin WW, Cusin I, Rohner-Jeanrenaud F, Burger AG, Zapf J, Meier CA (1997) Direct effects of leptin on brown and white adipose tissue. J Clin Invest 100:2858–2864PubMedCentralPubMedCrossRefGoogle Scholar
  95. Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668PubMedCrossRefGoogle Scholar
  96. Smahel J (1986) Adipose tissue in plastic surgery. Ann Plast Surg 16:444–453PubMedCrossRefGoogle Scholar
  97. Sollevi A, Fredholm BB (1981) Role of adenosine in adipose tissue circulation. Acta Physiol Scand 112:293–298PubMedCrossRefGoogle Scholar
  98. Sonoda E, Aoki S, Uchihashi K, Soejima H, Kanaji S, Izuhara K, Satoh S, Fujitani N, Sugihara H, Toda S (2008) A new organotypic culture of adipose tissue fragments maintains viable mature adipocytes for a long term, together with development of immature adipocytes and mesenchymal stem cell-like cells. Endocrinology 149:4794–4798PubMedCrossRefGoogle Scholar
  99. Sorrell JM, Baber MA, Traktuev DO, March KL, Caplan AI (2011) The creation of an in vitro adipose tissue that contains a vascular-adipocyte complex. Biomaterials 32:9667–9676PubMedCrossRefGoogle Scholar
  100. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, Rydén M, Frisén J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787PubMedCrossRefGoogle Scholar
  101. Sugihara H, Yonemitsu N, Miyabara S, Yun K (1986) Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation 31:42–49PubMedCrossRefGoogle Scholar
  102. Sugihara H, Yonemitsu N, Miyabara S, Toda S (1987) Proliferation of unilocular fat cells in the primary culture. J Lipid Res 28:1038–1045PubMedGoogle Scholar
  103. Sugihara H, Yonemitsu N, Toda S, Miyabara S, Funatsumaru S, Matsumoto T (1988) Unilocular fat cells in three-dimensional collagen gel matrix culture. J Lipid Res 29:691–697PubMedGoogle Scholar
  104. Sugihara H, Funatsumaru S, Yonemitsu N, Miyabara S, Toda S, Hikichi Y (1989) A simple culture method of fat cells from mature fat tissue fragments. J Lipid Res 30:1987–1995PubMedGoogle Scholar
  105. Sumpio BE, Riley JT, Dardik A (2002) Cells in focus: endothelial cell. Int J Biochem Cell Biol 34:1508–1512PubMedCrossRefGoogle Scholar
  106. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92PubMedCrossRefGoogle Scholar
  107. Than A, Cheng Y, Foh LC, Leow MK, Lim SC, Chuah YJ, Kang Y, Chen P (2012) Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol 362:227–241PubMedCrossRefGoogle Scholar
  108. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672PubMedGoogle Scholar
  109. Vailhé B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81:439–452PubMedCrossRefGoogle Scholar
  110. Van Renterghem C, Vigne P, Barhanin J, Schmid-Alliana A, Frelin C, Lazdunski M (1988) Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem Biophys Res Commun 157:977–985PubMedCrossRefGoogle Scholar
  111. Wabitsch M, Hauner H, Heinze E, Teller WM (1995) The role of growth hormone/insulin-like growth factors in adipocyte differentiation. Metabolism 44:45–49PubMedCrossRefGoogle Scholar
  112. Wang MY, Lee Y, Unger RH (1999) Novel form of lipolysis induced by leptin. J Biol Chem 274:17541–17544PubMedCrossRefGoogle Scholar
  113. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH (2006) Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 55:2301–2310PubMedCrossRefGoogle Scholar
  114. Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S, Feldmann HM, Liang Z, Zhu Z, Nedergaard J, Cannon B, Cao Y (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9:99–109PubMedCrossRefGoogle Scholar
  115. Xue Y, Lim S, Bråkenhielm E, Cao Y (2010) Adipose angiogenesis: quantitative methods to study microvessel growth, regression and remodeling in vivo. Nat Protoc 5:912–920PubMedCrossRefGoogle Scholar
  116. Yang B, Rizzo V (2013) Shear stress activates eNOS at the endothelial apical surface through β1 containing integrins and caveolae. Cell Mol Bioeng 6:346–354PubMedCentralPubMedCrossRefGoogle Scholar
  117. Yang CC, Deng SJ, Hsu CC, Liu BH, Lin EC, Cheng WT, Wang PH, Ding ST (2010) Visfatin regulates genes related to lipid metabolism in porcine adipocytes. J Anim Sci 88:3233–3241PubMedCrossRefGoogle Scholar
  118. Yao R, Du Y, Zhang R, Lin F, Luan J (2013) A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution. Biomed Mater 8:045005PubMedCrossRefGoogle Scholar
  119. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg 32:48–55CrossRefGoogle Scholar
  120. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction. Arterioscler Thromb Vasc Biol 19:972–978PubMedCrossRefGoogle Scholar
  121. Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J, Dellsperger KC, Zhang C (2009) Role of TNF-alpha in vascular dysfunction. Clin Sci 116:219–230PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Birgit Huber
    • 1
  • Ann-Cathrin Volz
    • 2
  • Petra J. Kluger
    • 2
    • 3
    Email author
  1. 1.Institute of Interfacial Process Engineering and Plasma TechnologyUniversity of StuttgartStuttgartGermany
  2. 2.Process Analysis & Technology (PA&T)Reutlingen UniversityReutlingenGermany
  3. 3.Fraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany

Personalised recommendations