Advertisement

Cell and Tissue Research

, Volume 363, Issue 1, pp 69–84 | Cite as

Translation in the mammalian oocyte in space and time

  • Andrej SusorEmail author
  • Denisa Jansova
  • Martin Anger
  • Michal Kubelka
Review

Abstract

A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.

Keywords

Oocyte Translation RNA RNP Meiosis 

Notes

Acknowledgments

This review was supported by GACR 13-12291S, GACR 15-22765S/502, GACR P502122201 and Institutional Research Concept RVO67985904.

References

  1. Alves VS, Motta FL, Roffé M et al (2009) GCN2 activation and eIF2alpha phosphorylation in the maturation of mouse oocytes. Biochem Biophys Res Commun 378:41–44. doi: 10.1016/j.bbrc.2008.10.161 PubMedCrossRefGoogle Scholar
  2. Bachvarova R, De Leon V, Johnson A et al (1985) Changes in total RNA, polyadenylated RNA, and actin mRNA during meiotic maturation of mouse oocytes. Dev Biol 108:325–331PubMedCrossRefGoogle Scholar
  3. Bakheet T, Williams BRG, Khabar KSA (2006) ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 34:D111–114. doi: 10.1093/nar/gkj052 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21:403–408. doi: 10.1016/j.ceb.2009.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150. doi: 10.1093/nar/gki1012 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belloc E, Méndez R (2008) A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452:1017–1021. doi: 10.1038/nature06809 PubMedCrossRefGoogle Scholar
  7. Bernstein E, Kim SY, Carmell MA et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217. doi: 10.1038/ng1253 PubMedCrossRefGoogle Scholar
  8. Bettegowda A, Smith GW (2007) Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development. Front Biosci 12:3713–3726PubMedCrossRefGoogle Scholar
  9. Bhatt DM, Pandya-Jones A, Tong A-J et al (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150:279–290. doi: 10.1016/j.cell.2012.05.043 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bischoff M, Parfitt D-E, Zernicka-Goetz M (2008) Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development 135:953–962. doi: 10.1242/dev.014316 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blower MD, Feric E, Weis K, Heald R (2007) Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol 179:1365–1373. doi: 10.1083/jcb.200705163 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bodenmiller B, Zunder ER, Finck R et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30:858–867. doi: 10.1038/nbt.2317 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonner MK, Poole DS, Xu T et al (2011) Mitotic spindle proteomics in Chinese hamster ovary cells. PLoS ONE 6, e20489. doi: 10.1371/journal.pone.0020489 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boothby TC, Wolniak SM (2011) Masked mRNA is stored with aggregated nuclear speckles and its asymmetric redistribution requires a homolog of mago nashi. BMC Cell Biol 12:45. doi: 10.1186/1471-2121-12-45 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boothby TC, Zipper RS, van der Weele CM, Wolniak SM (2013) Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev Cell 24:517–529. doi: 10.1016/j.devcel.2013.01.015 PubMedCrossRefGoogle Scholar
  16. Bouniol-Baly C, Hamraoui L, Guibert J et al (1999) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 60:580–587. doi: 10.1095/biolreprod60.3.580 PubMedCrossRefGoogle Scholar
  17. Boylan KLM, Mische S, Li M et al (2008) Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis. PLoS Genet 4:e36. doi: 10.1371/journal.pgen.0040036 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brandhorst BP (1985) Informational content of the echinoderm egg. Dev Biol (NY) 1:525–576Google Scholar
  19. Brandt A, Papagiannouli F, Wagner N et al (2006) Developmental control of nuclear size and shape by Kugelkern and Kurzkern. Curr Biol 16:543–552. doi: 10.1016/j.cub.2006.01.051 PubMedCrossRefGoogle Scholar
  20. Brown KS, Blower MD, Maresca TJ et al (2007) Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J Cell Biol 176:765–770. doi: 10.1083/jcb.200610043 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brunet S, Verlhac MH (2011) Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update 17:68–75. doi: 10.1093/humupd/dmq044 PubMedCrossRefGoogle Scholar
  22. Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16:95–109. doi: 10.1038/nrm3918 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Campbell DS, Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37:939–952PubMedCrossRefGoogle Scholar
  24. Carrieri C, Cimatti L, Biagioli M et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457. doi: 10.1038/nature11508 PubMedCrossRefGoogle Scholar
  25. Carrieri C, Forrest ARR, Santoro C et al (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9:114. doi: 10.3389/fncel.2015.00114 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94. doi: 10.1016/j.cell.2014.03.008 PubMedCrossRefGoogle Scholar
  27. Chan S-P, Slack FJ (2006) microRNA-mediated silencing inside P-bodies. RNA Biol 3:97–100PubMedCrossRefGoogle Scholar
  28. Chen J, Torcia S, Xie F et al (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15:1415–1423. doi: 10.1038/ncb2873 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cox LJ, Hengst U, Gurskaya NG et al (2008) Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 10:149–159. doi: 10.1038/ncb1677 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cross BCS, McKibbin C, Callan AC et al (2009) Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J Cell Sci 122:4393–4400. doi: 10.1242/jcs.054494 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Curtis D, Lehmann R, Zamore PD (1995) Translational regulation in development. Cell 81:171–178PubMedCrossRefGoogle Scholar
  32. Dalton CM, Carroll J (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J Cell Sci 126:2955–2964. doi: 10.1242/jcs.128744 PubMedPubMedCentralCrossRefGoogle Scholar
  33. De La Fuente R, Viveiros MM, Burns KH et al (2004) Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol 275:447–458. doi: 10.1016/j.ydbio.2004.08.028 CrossRefGoogle Scholar
  34. Di Palma S, Bodenmiller B (2015) Unraveling cell populations in tumors by single-cell mass cytometry. Curr Opin Biotechnol 31:122–129. doi: 10.1016/j.copbio.2014.07.004 PubMedCrossRefGoogle Scholar
  35. Dieterich DC, Hodas JJL, Gouzer G et al (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897–905. doi: 10.1038/nn.2580 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dumont J, Petri S, Pellegrin F et al (2007) A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176:295–305. doi: 10.1083/jcb.200605199 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Eliscovich C, Peset I, Vernos I, Méndez R (2008) Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 10:858–865. doi: 10.1038/ncb1746 PubMedCrossRefGoogle Scholar
  38. Ellederova Z, Kovarova H, Melo-Sterza F et al (2006) Suppression of translation during in vitro maturation of pig oocytes despite enhanced formation of cap-binding protein complex eIF4F and 4E-BP1 hyperphosphorylation. Mol Reprod Dev 73:68–76. doi: 10.1002/mrd.20368 PubMedCrossRefGoogle Scholar
  39. Ellederová Z, Cais O, Susor A et al (2008) ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes. Mol Reprod Dev 75:309–317. doi: 10.1002/mrd.20690 PubMedCrossRefGoogle Scholar
  40. Evsikov AV, Graber JH, Brockman JM et al (2006) Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 20:2713–2727. doi: 10.1101/gad.1471006 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi: 10.1146/annurev-biochem-060308-103103 PubMedCrossRefGoogle Scholar
  42. FitzHarris G, Marangos P, Carroll J (2007) Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol 305:133–144. doi: 10.1016/j.ydbio.2007.02.006 PubMedCrossRefGoogle Scholar
  43. Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017. doi: 10.1095/biolreprod.109.082057 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126. doi: 10.1038/nrm2104 PubMedCrossRefGoogle Scholar
  45. Gebauer F, Xu W, Cooper GM, Richter JD (1994) Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J 13:5712–5720PubMedPubMedCentralGoogle Scholar
  46. Gingras AC, Gygi SP, Raught B et al (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437PubMedPubMedCentralCrossRefGoogle Scholar
  47. Göhring J, Jacak J, Barta A (2014) Imaging of endogenous messenger RNA splice variants in living cells reveals nuclear retention of transcripts inaccessible to nonsense-mediated decay in Arabidopsis. Plant Cell 26:754–764. doi: 10.1105/tpc.113.118075 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Grillo G, Turi A, Licciulli F et al (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–80. doi: 10.1093/nar/gkp902 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Grosskortenhaus R, Robinson KJ, Doe CQ (2006) Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. Genes Dev 20:2618–2627. doi: 10.1101/gad.1445306 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840. doi: 10.1038/nature09267 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076. doi: 10.1038/nature08975 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Haim L, Zipor G, Aronov S, Gerst JE (2007) A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat Methods 4:409–412. doi: 10.1038/nmeth1040 PubMedGoogle Scholar
  53. Hall C, Mahadevan LC, Whatley SA et al (1982) The polyadenylated RNA directing the synthesis of the rat myelin basic proteins is present in both free and membrane-bound forebrain polyribosomes. Biochem J 202:407–417PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hall C, Mahadevan L, Whatley S et al (1984) Characterization of translation products of the polyadenylated RNA of free and membrane-bound polyribosomes of rat forebrain. Biochem J 219:751–761PubMedPubMedCentralCrossRefGoogle Scholar
  55. Halstead JM, Lionnet T, Wilbertz JH et al (2015) Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347:1367–1671. doi: 10.1126/science.aaa3380 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. doi: 10.1038/nature11993 PubMedCrossRefGoogle Scholar
  57. Hashimoto N, Kishimoto T (1988) Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev Biol 126:242–252PubMedCrossRefGoogle Scholar
  58. Heesom KJ, Gampel A, Mellor H, Denton RM (2001) Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr Biol 11:1374–1379PubMedCrossRefGoogle Scholar
  59. Hendler RW (1974) Protein synthesis by membrane-bound polyribosomes. Biomembranes 5:147–211PubMedGoogle Scholar
  60. Herr JC, Chertihin O, Digilio L et al (2008) Distribution of RNA binding protein MOEP19 in the oocyte cortex and early embryo indicates pre-patterning related to blastomere polarity and trophectoderm specification. Dev Biol 314:300–316. doi: 10.1016/j.ydbio.2007.11.027 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hershey JW (1991) Translational control in mammalian cells. Annu Rev Biochem 60:717–755. doi: 10.1146/annurev.bi.60.070191.003441 PubMedCrossRefGoogle Scholar
  62. Hershey JW, Asano K, Naranda T et al (1996) Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast. Biochimie 78:903–907PubMedCrossRefGoogle Scholar
  63. Holt CE, Bullock SL (2009) Subcellular mRNA localization in animal cells and why it matters. Science 326:1212–1216. doi: 10.1126/science.1176488 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hu J, Wang F, Zhu X et al (2010) Mouse ZAR1-like (XM_359149) colocalizes with mRNA processing components and its dominant-negative mutant caused two-cell-stage embryonic arrest. Dev Dyn 239:407–424. doi: 10.1002/dvdy.22170 PubMedCrossRefGoogle Scholar
  65. Hwang SY, Oh B, Knowles BB et al (2001) Expression of genes involved in mammalian meiosis during the transition from egg to embryo. Mol Reprod Dev 59:144–158. doi: 10.1002/mrd.1017 PubMedCrossRefGoogle Scholar
  66. Inoue A, Nakajima R, Nagata M, Aoki F (2008) Contribution of the oocyte nucleus and cytoplasm to the determination of meiotic and developmental competence in mice. Hum Reprod 23:1377–1384. doi: 10.1093/humrep/den096 PubMedCrossRefGoogle Scholar
  67. Jakymiw A, Pauley KM, Li S et al (2007) The role of GW/P-bodies in RNA processing and silencing. J Cell Sci 120:1317–1323. doi: 10.1242/jcs.03429 PubMedCrossRefGoogle Scholar
  68. Jambhekar A, Derisi JL (2007) Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13:625–642. doi: 10.1261/rna.262607 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jambor H, Surendranath V, Kalinka AT et al (2015) Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. eLife. doi: 10.7554/eLife.05003 PubMedGoogle Scholar
  70. Jones GM, Cram DS, Song B et al (2008) Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod 23:1138–1144. doi: 10.1093/humrep/den085 PubMedCrossRefGoogle Scholar
  71. Kalous J, Solc P, Baran V et al (2006) PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol Cell 98:111–123. doi: 10.1042/BC20050020 PubMedCrossRefGoogle Scholar
  72. Kambadur R, Koizumi K, Stivers C et al (1998) Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12:246–260PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kang SA, Pacold ME, Cervantes CL et al (2013) mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin. Science 341:1236566. doi: 10.1126/science.1236566 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kanmera S, Sakakibara R, Ishiguro M (1995) Inhibition of polar body formation in mouse denuded oocytes cultured in vitro by protein synthesis inhibitors. Biol Pharm Bull 18:1255–1258PubMedCrossRefGoogle Scholar
  75. Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775. doi: 10.1146/annurev.biochem.70.1.755 PubMedCrossRefGoogle Scholar
  76. Kim JH, Richter JD (2006) Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24:173–183. doi: 10.1016/j.molcel.2006.08.016 PubMedCrossRefGoogle Scholar
  77. King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97:19–33. doi: 10.1042/BC20040067 PubMedCrossRefGoogle Scholar
  78. Knowles BB, Evsikov AV, de Vries WN et al (2003) Molecular control of the oocyte to embryo transition. Philos Trans R Soc Lond B 358:1381–1387. doi: 10.1098/rstb.2003.1330 CrossRefGoogle Scholar
  79. Kogasaka Y, Hoshino Y, Hiradate Y et al (2013) Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol Reprod Dev 80:334–348. doi: 10.1002/mrd.22166 PubMedCrossRefGoogle Scholar
  80. Komrskova P, Susor A, Malik R et al (2014) Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes. PLoS ONE 9, e101222. doi: 10.1371/journal.pone.0101222 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kondrashov N, Pusic A, Stumpf CR et al (2011) Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145:383–397. doi: 10.1016/j.cell.2011.03.028 PubMedPubMedCentralCrossRefGoogle Scholar
  82. König H, Matter N, Bader R et al (2007) Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 131:718–729. doi: 10.1016/j.cell.2007.09.043 PubMedCrossRefGoogle Scholar
  83. Kopecny V, Biggiogera M, Laurincik J et al (1996) Fine structural cytochemical and immunocytochemical analysis of nucleic acids and ribonucleoprotein distribution in nuclei of pig oocytes and early preimplantation embryos. Chromosoma 104:561–574PubMedCrossRefGoogle Scholar
  84. Kraut-Cohen J, Gerst JE (2010) Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 35:459–469. doi: 10.1016/j.tibs.2010.02.006 PubMedCrossRefGoogle Scholar
  85. Krichevsky AM, Kosik KS (2001) Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32:683–696PubMedCrossRefGoogle Scholar
  86. Kronja I, Whitfield ZJ, Yuan B et al (2014) Quantitative proteomics reveals the dynamics of protein changes during Drosophila oocyte maturation and the oocyte-to-embryo transition. Proc Natl Acad Sci U S A 111:16023–16028. doi: 10.1073/pnas.1418657111 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kurotaki Y, Hatta K, Nakao K et al (2007) Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316:719–723. doi: 10.1126/science.1138591 PubMedCrossRefGoogle Scholar
  88. Lécuyer E, Yoshida H, Parthasarathy N et al (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187. doi: 10.1016/j.cell.2007.08.003 PubMedCrossRefGoogle Scholar
  89. Lee JH, Daugharthy ER, Scheiman J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458. doi: 10.1038/nprot.2014.191 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Li L, Baibakov B, Dean J (2008) A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell 15:416–425. doi: 10.1016/j.devcel.2008.07.010 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137:859–870. doi: 10.1242/dev.039487 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Li L, Lu X, Dean J (2013) The maternal to zygotic transition in mammals. Mol Asp Med 34:919–938. doi: 10.1016/j.mam.2013.01.003 CrossRefGoogle Scholar
  93. Lin C-J, Koh FM, Wong P et al (2014) Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell 30:268–279. doi: 10.1016/j.devcel.2014.06.022 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lipshitz HD, Smibert CA (2000) Mechanisms of RNA localization and translational regulation. Curr Opin Genet Dev 10:476–488PubMedCrossRefGoogle Scholar
  95. Louvet-Vallée S, Vinot S, Maro B (2005) Mitotic spindles and cleavage planes are oriented randomly in the two-cell mouse embryo. Curr Biol 15:464–469. doi: 10.1016/j.cub.2004.12.078 PubMedCrossRefGoogle Scholar
  96. Ma J, Flemr M, Stein P et al (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270. doi: 10.1016/j.cub.2009.12.042 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ma J, Flemr M, Strnad H et al (2013) Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol Reprod 88:11. doi: 10.1095/biolreprod.112.105312 PubMedPubMedCentralCrossRefGoogle Scholar
  98. MacNicol MC, MacNicol AM (2010) Developmental timing of mRNA translation--integration of distinct regulatory elements. Mol Reprod Dev 77:662–669. doi: 10.1002/mrd.21191 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997PubMedPubMedCentralCrossRefGoogle Scholar
  100. Manzella JM, Rychlik W, Rhoads RE et al (1991) Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J Biol Chem 266:2383–2389PubMedGoogle Scholar
  101. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–29. doi: 10.1093/hmg/ddl046 PubMedCrossRefGoogle Scholar
  102. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. doi: 10.1038/nature11928 PubMedCrossRefGoogle Scholar
  103. Mendez R, Richter JD (2001) Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2:521–529. doi: 10.1038/35080081 PubMedCrossRefGoogle Scholar
  104. Mendez R, Hake LE, Andresson T et al (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404:302–307. doi: 10.1038/35005126 PubMedCrossRefGoogle Scholar
  105. Mendez R, Barnard D, Richter JD (2002) Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J 21:1833–1844. doi: 10.1093/emboj/21.7.1833 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ménétret J-F, Schaletzky J, Clemons WM et al (2007) Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 28:1083–1092. doi: 10.1016/j.molcel.2007.10.034 PubMedCrossRefGoogle Scholar
  107. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. doi: 10.1038/nrg2521 PubMedCrossRefGoogle Scholar
  108. Mili S, Macara IG (2009) RNA localization and polarity: from A(PC) to Z(BP). Trends Cell Biol 19:156–164. doi: 10.1016/j.tcb.2009.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Monti M, Zanoni M, Calligaro A et al (2013) Developmental arrest and mouse antral not-surrounded nucleolus oocytes. Biol Reprod 88:2. doi: 10.1095/biolreprod.112.103887 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Moreno JA, Radford H, Peretti D et al (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507–511. doi: 10.1038/nature11058 PubMedPubMedCentralGoogle Scholar
  111. Morita S, Horii T, Kimura M et al (2007) One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89:687–696. doi: 10.1016/j.ygeno.2007.01.004 PubMedCrossRefGoogle Scholar
  112. Morley SJ, Thomas G (1991) Intracellular messengers and the control of protein synthesis. Pharmacol Ther 50:291–319PubMedCrossRefGoogle Scholar
  113. Motosugi N, Bauer T, Polanski Z et al (2005) Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev 19:1081–1092. doi: 10.1101/gad.1304805 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Mtango NR, Sutovsky M, Susor A et al (2012) Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. J Cell Physiol 227:1592–1603. doi: 10.1002/jcp.22876 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nakamura A, Sato K, Hanyu-Nakamura K (2004) Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 6:69–78PubMedCrossRefGoogle Scholar
  116. Niedojadło J, Kubicka E, Kalich B, Smoliński DJ (2014) Poly(A) RNAs including coding proteins RNAs occur in plant Cajal bodies. PLoS ONE 9:e111780. doi: 10.1371/journal.pone.0111780 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Nothias JY, Majumder S, Kaneko KJ, DePamphilis ML (1995) Regulation of gene expression at the beginning of mammalian development. J Biol Chem 270:22077–22080PubMedCrossRefGoogle Scholar
  118. Novoa I, Gallego J, Ferreira PG, Mendez R (2010) Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol 12:447–456. doi: 10.1038/ncb2046 PubMedCrossRefGoogle Scholar
  119. Ohsugi M, Zheng P, Baibakov B et al (2008) Maternally derived FILIA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135:259–269. doi: 10.1242/dev.011445 PubMedCrossRefGoogle Scholar
  120. Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646. doi: 10.1016/j.molcel.2007.02.011 PubMedCrossRefGoogle Scholar
  121. Paronetto MP, Bianchi E, Geremia R, Sette C (2008) Dynamic expression of the RNA-binding protein Sam68 during mouse pre-implantation development. Gene Expr Patterns 8:311–322. doi: 10.1016/j.gep.2008.01.005 PubMedCrossRefGoogle Scholar
  122. Paynton BV, Bachvarova R (1994) Polyadenylation and deadenylation of maternal mRNAs during oocyte growth and maturation in the mouse. Mol Reprod Dev 37:172–180. doi: 10.1002/mrd.1080370208 PubMedCrossRefGoogle Scholar
  123. Pesty A, Miyara F, Debey P et al (2007) Multiparameter assessment of mouse oogenesis during follicular growth in vitro. Mol Hum Reprod 13:3–9. doi: 10.1093/molehr/gal089 PubMedCrossRefGoogle Scholar
  124. Pierre A, Gautier M, Callebaut I et al (2007) Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed KHDC1/DPPA5/ECAT1/OOEP gene family. Genomics 90:583–594. doi: 10.1016/j.ygeno.2007.06.003 PubMedCrossRefGoogle Scholar
  125. Pilot F, Philippe J-M, Lemmers C et al (2006) Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development 133:711–723. doi: 10.1242/dev.02251 PubMedCrossRefGoogle Scholar
  126. Piqué M, López JM, Foissac S et al (2008) A combinatorial code for CPE-mediated translational control. Cell 132:434–448. doi: 10.1016/j.cell.2007.12.038 PubMedCrossRefGoogle Scholar
  127. Potireddy S, Midic U, Liang C-G et al (2010) Positive and negative cis-regulatory elements directing postfertilization maternal mRNA translational control in mouse embryos. Am J Physiol Cell Physiol 299:C818–827. doi: 10.1152/ajpcell.00166.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Prasanth KV, Prasanth SG, Xuan Z et al (2005) Regulating gene expression through RNA nuclear retention. Cell 123:249–263. doi: 10.1016/j.cell.2005.08.033 PubMedCrossRefGoogle Scholar
  129. Puoti A, Gallegos M, Zhang B et al (1997) Controls of cell fate and pattern by 3’ untranslated regions: the Caenorhabditis elegans sperm/oocyte decision. Cold Spring Harb Symp Quant Biol 62:19–24PubMedCrossRefGoogle Scholar
  130. Pyronnet S (2000) Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 60:1237–1243PubMedCrossRefGoogle Scholar
  131. Racki WJ, Richter JD (2006) CPEB controls oocyte growth and follicle development in the mouse. Development 133:4527–4537. doi: 10.1242/dev.02651 PubMedCrossRefGoogle Scholar
  132. Reich A, Klatsky P, Carson S, Wessel G (2011) The transcriptome of a human polar body accurately reflects its sibling oocyte. J Biol Chem 286:40743–40749. doi: 10.1074/jbc.M111.289868 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Richter JD (2007) CPEB: a life in translation. Trends Biochem Sci 32:279–285. doi: 10.1016/j.tibs.2007.04.004 PubMedCrossRefGoogle Scholar
  134. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. doi: 10.1016/j.cell.2007.05.022 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Romasko EJ, Amarnath D, Midic U, Latham KE (2013) Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics 195:349–358. doi: 10.1534/genetics.113.154005 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rossant J, Tam PPL (2004) Emerging asymmetry and embryonic patterning in early mouse development. Dev Cell 7:155–164. doi: 10.1016/j.devcel.2004.07.012 PubMedCrossRefGoogle Scholar
  137. Sanfins A, Plancha CE, Overstrom EW, Albertini DF (2004) Meiotic spindle morphogenesis in in vivo and in vitro matured mouse oocytes: insights into the relationship between nuclear and cytoplasmic quality. Hum Reprod 19:2889–2899. doi: 10.1093/humrep/deh528 PubMedCrossRefGoogle Scholar
  138. Saraogi I, Shan S (2011) Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic 12:535–542. doi: 10.1111/j.1600-0854.2011.01171.x PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sauer G, Körner R, Hanisch A et al (2005) Proteome analysis of the human mitotic spindle. Mol Cell Proteomics 4:35–43. doi: 10.1074/mcp.M400158-MCP200 PubMedCrossRefGoogle Scholar
  140. Scantland S, Grenon J-P, Desrochers M-H et al (2011) Method to isolate polyribosomal mRNA from scarce samples such as mammalian oocytes and early embryos. BMC Dev Biol 11:8. doi: 10.1186/1471-213X-11-8 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Scheper GC, Proud CG (2002) Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 269:5350–5359PubMedCrossRefGoogle Scholar
  142. Scheper GC, Morrice NA, Kleijn M, Proud CG (2001) The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol 21:743–754. doi: 10.1128/MCB.21.3.743-754.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Schier AF (2007) The maternal-zygotic transition: death and birth of RNAs. Science 316:406–407. doi: 10.1126/science.1140693 PubMedCrossRefGoogle Scholar
  144. Schlaitz A-L, Thompson J, Wong CCL et al (2013) REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell 26:315–323. doi: 10.1016/j.devcel.2013.06.016 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498. doi: 10.1016/j.cell.2007.06.025 PubMedCrossRefGoogle Scholar
  146. Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331PubMedCrossRefGoogle Scholar
  147. Schultz RM, Wassarman PM (1977) Biochemical studies of mammalian oogenesis: Protein synthesis during oocyte growth and meiotic maturation in the mouse. J Cell Sci 24:167–194PubMedGoogle Scholar
  148. Schultz RM, LaMarca MJ, Wassarman PM (1978) Absolute rates of protein synthesis during meiotic maturation of mammalian oocytes in vitro. Proc Natl Acad Sci U S A 75:4160–4164PubMedPubMedCentralCrossRefGoogle Scholar
  149. Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127:891–904. doi: 10.1016/j.cell.2006.11.016 PubMedCrossRefGoogle Scholar
  150. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630. doi: 10.1038/nrg3542 PubMedCrossRefGoogle Scholar
  151. Shishova KV, Lavrentyeva EA, Dobrucki JW, Zatsepina OV (2015) Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA. Dev Biol 397:267–281. doi: 10.1016/j.ydbio.2014.11.022 PubMedCrossRefGoogle Scholar
  152. Siemer C, Smiljakovic T, Bhojwani M et al (2009) Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development. Mol Reprod Dev 76:1208–1219. doi: 10.1002/mrd.21096 PubMedCrossRefGoogle Scholar
  153. Slayter HS, Warner JR, Rich A, Hall CE (1963) The visualization of polyribosomal structure. J Mol Biol 7:652–657PubMedCrossRefGoogle Scholar
  154. Smith WB, Starck SR, Roberts RW, Schuman EM (2005) Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45:765–779. doi: 10.1016/j.neuron.2005.01.015 PubMedCrossRefGoogle Scholar
  155. Sonenberg N, Gingras AC (1998) The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10:268–275PubMedCrossRefGoogle Scholar
  156. Sonenberg N, Morgan MA, Merrick WC, Shatkin AJ (1978) A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5’-terminal cap in mRNA. Proc Natl Acad Sci U S A 75:4843–4847PubMedPubMedCentralCrossRefGoogle Scholar
  157. Stein P, Rozhkov NV, Li F et al (2015) Essential Role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet 11:e1005013. doi: 10.1371/journal.pgen.1005013 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Stitzel ML, Seydoux G (2007) Regulation of the oocyte-to-zygote transition. Science 316:407–408. doi: 10.1126/science.1138236 PubMedCrossRefGoogle Scholar
  159. Strome S, Lehmann R (2007) Germ versus soma decisions: lessons from flies and worms. Science 316:392–393. doi: 10.1126/science.1140846 PubMedCrossRefGoogle Scholar
  160. Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138:1653–1661. doi: 10.1242/dev.056234 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Suh N, Baehner L, Moltzahn F et al (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20:271–277. doi: 10.1016/j.cub.2009.12.044 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Susor A, Ellederova Z, Jelinkova L et al (2007) Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1. Reproduction 134:559–568. doi: 10.1530/REP-07-0079 PubMedCrossRefGoogle Scholar
  163. Susor A, Jelínková L, Karabínová P et al (2008) Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol Reprod Dev 75:1716–1725. doi: 10.1002/mrd.20913 PubMedCrossRefGoogle Scholar
  164. Susor A, Liskova L, Toralova T et al (2010) Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes. Biol Reprod 82:1151–1161. doi: 10.1095/biolreprod.109.081547 PubMedCrossRefGoogle Scholar
  165. Susor A, Jansova D, Cerna R et al (2015) Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun 6:6078. doi: 10.1038/ncomms7078 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Swetloff A, Conne B, Huarte J et al (2009) Dcp1-bodies in mouse oocytes. Mol Biol Cell 20:4951–4961. doi: 10.1091/mbc.E09-02-0123 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Szöllösi MS, Kubiak JZ, Debey P et al (1993) Inhibition of protein kinases by 6-dimethylaminopurine accelerates the transition to interphase in activated mouse oocytes. J Cell Sci 104(Pt 3):861–872PubMedGoogle Scholar
  168. Tay J, Richter JD (2001) Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 1:201–213PubMedCrossRefGoogle Scholar
  169. Tomek W, Melo Sterza FA, Kubelka M et al (2002a) Regulation of translation during in vitro maturation of bovine oocytes: the role of MAP kinase, eIF4E (cap binding protein) phosphorylation, and eIF4E-BP1. Biol Reprod 66:1274–1282PubMedCrossRefGoogle Scholar
  170. Tomek W, Torner H, Kanitz W (2002b) Comparative analysis of protein synthesis, transcription and cytoplasmic polyadenylation of mRNA during maturation of bovine oocytes in vitro. Reprod Domest Anim 37:86–91. doi: 10.1046/j.1439-0531.2002.00336.x PubMedCrossRefGoogle Scholar
  171. Tsai M-C, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693. doi: 10.1126/science.1192002 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Vallée M, Dufort I, Desrosiers S et al (2009) Revealing the bovine embryo transcript profiles during early in vivo embryonic development. Reproduction 138:95–105. doi: 10.1530/REP-08-0533 PubMedCrossRefGoogle Scholar
  173. Vassalli JD, Stutz A (1995) Translational control. Awakening dormant mRNAs. Curr Biol 5:476–479PubMedCrossRefGoogle Scholar
  174. Vautier D, Besombes D, Chassoux D et al (1994) Redistribution of nuclear antigens linked to cell proliferation and RNA processing in mouse oocytes and early embryos. Mol Reprod Dev 38:119–130. doi: 10.1002/mrd.1080380202 PubMedCrossRefGoogle Scholar
  175. Vedeler A, Pryme IF, Hesketh JE (1991) Compartmentalization of polysomes into free, cytoskeletal-bound and membrane-bound populations. Biochem Soc Trans 19:1108–1111PubMedCrossRefGoogle Scholar
  176. VerMilyea MD, Maneck M, Yoshida N et al (2011) Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J 30:1841–1851. doi: 10.1038/emboj.2011.92 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Villalba A, Coll O, Gebauer F (2011) Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 21:452–457. doi: 10.1016/j.gde.2011.04.006 PubMedCrossRefGoogle Scholar
  178. Vinot S, Le T, Maro B, Louvet-Vallée S (2004) Two PAR6 proteins become asymmetrically localized during establishment of polarity in mouse oocytes. Curr Biol 14:520–525. doi: 10.1016/j.cub.2004.02.061 PubMedCrossRefGoogle Scholar
  179. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:1909–1920. doi: 10.1093/emboj/16.8.1909 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Watson AJ, Wiemer KE, Arcellana-Panlilio M, Schultz GA (1992) U2 small nuclear RNA localization and expression during bovine preimplantation development. Mol Reprod Dev 31:231–240. doi: 10.1002/mrd.1080310402 PubMedCrossRefGoogle Scholar
  181. Weatheritt RJ, Gibson TJ, Babu MM (2014) Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems. Nat Struct Mol Biol 21:833–839. doi: 10.1038/nsmb.2876 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Weston A, Sommerville J (2006) Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 34:3082–3094. doi: 10.1093/nar/gkl409 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yang L, Duff MO, Graveley BR et al (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16. doi: 10.1186/gb-2011-12-2-r16 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yang C-X, Du Z-Q, Wright EC et al (2012) Small RNA Profile of the Cumulus-Oocyte Complex and Early Embryos in the Pig. Biol Reprod 87(Article 117):1–11. doi: 10.1095/biolreprod.111.096669 Google Scholar
  185. Yurttas P, Vitale AM, Fitzhenry RJ et al (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135:2627–2636. doi: 10.1242/dev.016329 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zeng F, Schultz RM (2005) RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283:40–57. doi: 10.1016/j.ydbio.2005.03.038 PubMedCrossRefGoogle Scholar
  187. Zheng P, Baibakov B, Wang X, Dean J (2013) PtdIns(3,4,5)P3 is constitutively synthesized and required for spindle translocation during meiosis in mouse oocytes. J Cell Sci 126:715–721. doi: 10.1242/jcs.118042 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhu K, Yan L, Zhang X et al (2015) Identification of a human subcortical maternal complex. Mol Hum Reprod 21:320–329. doi: 10.1093/molehr/gau116 PubMedCrossRefGoogle Scholar
  189. Zuccotti M, Ponce RH, Boiani M et al (2002) The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 10:73–78PubMedCrossRefGoogle Scholar
  190. Zuccotti M, Merico V, Cecconi S et al (2011) What does it take to make a developmentally competent mammalian egg? Hum Reprod Update 17:525–540. doi: 10.1093/humupd/dmr009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrej Susor
    • 1
    Email author
  • Denisa Jansova
    • 1
  • Martin Anger
    • 1
    • 2
  • Michal Kubelka
    • 1
  1. 1.Institute of Animal Physiology and Genetics, ASCRLibechovCzech Republic
  2. 2.CEITEC-Veterinary Research InstituteBrnoCzech Republic

Personalised recommendations