Cell and Tissue Research

, Volume 362, Issue 3, pp 513–527 | Cite as

Molecular organization and fine structure of the human tectorial membrane: is it replenished?

  • Hisamitsu HayashiEmail author
  • Annelies Schrott-Fischer
  • Rudolf GlueckertEmail author
  • Wei Liu
  • Willi Salvenmoser
  • Peter Santi
  • Helge Rask-Andersen
Regular Article


Auditory sensitivity and frequency resolution depend on the physical properties of the basilar membrane in combination with outer hair cell-based amplification in the cochlea. The physiological role of the tectorial membrane (TM) in hair cell transduction has been controversial for decades. New insights into the TM structure and function have been gained from studies of targeted gene disruption. Several missense mutations in genes regulating the human TM structure have been described with phenotypic expressions. Here, we portray the remarkable gradient structure and molecular organization of the human TM. Ultrastructural analysis and confocal immunohistochemistry were performed in freshly fixed human cochleae obtained during surgery. Based on these findings and recent literature, we discuss the role of human TMs in hair cell activation. Moreover, the outcome proposes that the α-tectorin-positive amorphous layer of the human TM is replenished and partly undergoes regeneration during life.


Tectorial membrane Human Electron microscopy α-tectorin 



Basilar membrane


Hensen’s stripe


Interdental cell


Inner hair cell


Kimura’s membrane




Limbal zone


Marginal zone


Marginal net


Middle zone


Outer hair cell


Radial fiber


Scanning electron microscopy


Subtectorial layer


Transmission electron microscopy


Tectorial membrane



This study was supported by ALF grants from Uppsala University Hospital and Uppsala University and by the Tysta Skolan Foundation, Swedish Deafness Foundation (HRF) and Land Tirol Technologie Förderungsprogram, Förderung von Wissenschaft, Forschung und Entwicklung (Programm K-Regio Vamel) and Med El, Innsbruck, Austria. Our research is part of the European Community 7th Framework Programme on Research, Technological Development and Demonstration. Project acronym: NANOCI. Grant agreement no: 281056. It was also supported by kindly donated private funds from Börje Runögård, Sweden. Dr. Klaus Qvortrup is acknowledged for providing oxygenated fluorocarbon fixative for the TEM investigation.


  1. Alasti F, Sanati MH, Behrouzifard AH, Sadeghi A, de Brouwer AP, Kremer H, Smith RJ, Van Camp G (2008) A novel TECTA mutation confirms the recognizable phenotype among autosomal recessive hearing impairment families. Int J Pediatr Otorhinolaryngol 72:249–55CrossRefPubMedGoogle Scholar
  2. Gavara N, Chadwick RS (2009) Collagen-based mechanical anisotropy of the tectorial membrane: implications for inter-row coupling of outer hair cell bundles. PLoS ONE 4:e4877PubMedCentralCrossRefPubMedGoogle Scholar
  3. Ghaffari R, Aranyosi AJ, Freeman DM (2007) Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proc Natl Acad Sci U S A 104:16510–16515PubMedCentralCrossRefPubMedGoogle Scholar
  4. Gil-Loyzaga P, Raymond J, Gabrion J (1985) Carbohydrates detected by lectins in the vestibular organ. Hear Res 18:269–272CrossRefPubMedGoogle Scholar
  5. Glueckert R, Pfaller K, Kinnefors A, Schrott-Fischer A, Rask-Andersen H (2005) High resolution scanning electron microscopy of the human organ of Corti. A study using freshly fixed surgical specimens. Hear Res 199:40–56PubMedGoogle Scholar
  6. Hardesty I (1915) On the proportions, development and attachment of the tectorial membrane. Am J Anat 18:1–73CrossRefGoogle Scholar
  7. Hasko JA, Richardson GP (1988) The ultrastructural organization and properties of the mouse tectorial membrane matrix. Hear Res 35:21–38CrossRefPubMedGoogle Scholar
  8. Hilding AC (1952) Studies on the otic labyrinth. On the origin and insertion of the tectorial membrane. Ann Otol Rhinol Laryngol 61:354–70CrossRefPubMedGoogle Scholar
  9. Hoshino T (1981) Imprints of the inner sensory cell hairs on the human tectorial membrane. Arch Otorhinolaryngol 232:65–71CrossRefPubMedGoogle Scholar
  10. Hoshino T (1977) Contact between the tectorial membrane and the cochlear sensory hairs in the human and the monkey. Arch Otorhinolaryngol 217:53–60CrossRefPubMedGoogle Scholar
  11. Hubbard A (1993) A traveling-wave amplifier model of the cochlea. Science 259:68–71CrossRefPubMedGoogle Scholar
  12. Iurato S (1960) Submicroscopic structure of the membranous labyrinth. 1. The tectorial membrane. Z Zellforsch Mikrosk Anat 52:105–28CrossRefPubMedGoogle Scholar
  13. Ishiyama E, Weibel J, Keels EW, Richardson TL (1970) Ultrastructure of the interdental cells in mammals. Pract Otorhinolaryngol (Basel) 32:321–34Google Scholar
  14. Khalkhali-Ellis Z, Hemming FW, Steel KP (1987) Glycoconjugates of the tectorial membrane. Hear Res 25:185–191CrossRefPubMedGoogle Scholar
  15. Kawabata I, Nomura Y (1981) The imprints of the human tectorial membrane. Acta Otolaryngol 91:29–35CrossRefGoogle Scholar
  16. Kimura RS (1966) Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta Otolaryngol 61:55–72CrossRefPubMedGoogle Scholar
  17. Kronester-Frei A (1978) Ultrastructure of the different zones of the tectorial membrane. Cell Tissue Res 193:11–23CrossRefPubMedGoogle Scholar
  18. Legan PK, Lukashkina VA, Goodyear RJ, Kössi M, Russell IJ, Richardson GP (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gainand timing of cochlear feedback. Neuron 28:273–285CrossRefPubMedGoogle Scholar
  19. Lim DJ (1969) Three dimensional observation of the inner ear with the scanning electron microscope. Acta Otolaryngol Suppl 255:1–38PubMedGoogle Scholar
  20. Lim DJ (1972) Fine morphology of the tectorial membrane. Its relationship to the organ of Corti. Arch Otolaryngol 96:199–215CrossRefPubMedGoogle Scholar
  21. Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146CrossRefPubMedGoogle Scholar
  22. Lim DJ, Rueda J (1990) Distribution of glycoconjugates during cochlea development. A histochemical study. Acta Otolaryngol 110:224–233CrossRefPubMedGoogle Scholar
  23. Liu W, Boström M, Kinnefors A, Rask-Andersen H (2009) Unique expression of connexins in the human cochlea. Hear Res 250:55–62CrossRefPubMedGoogle Scholar
  24. Lukashkin AN, Lukashkina VA, Legan PK, Richardson GP, Russell IJ (2004) Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild-type and transgenic Tecta(deltaENT/deltaENT) mice. J Neurophysiol 91:163–71CrossRefPubMedGoogle Scholar
  25. Lukashkin AN, Legan PK, Weddell TD, Lukashkina VA, Goodyear RJ, Welstead LJ, Petit C, Russell IJ, Richardson GP (2012) Mouse model for human deafness DFNB22 reveals that hearing impairment is due to a loss of inner hair cell stimulation. Proc Natl Acad Sci U S A 109:19351–19356PubMedCentralCrossRefPubMedGoogle Scholar
  26. Meaud J, Grosh K (2010) The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. J Acoust Soc Am 127:1411–1421PubMedCentralCrossRefPubMedGoogle Scholar
  27. Mustapha M, Weil D, Chardenoux S, Elias S, El-Zir E, Beckmann JS, Loiselet J, Petit C (1999) An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet 8:409–412CrossRefPubMedGoogle Scholar
  28. Møller MN, Caye-Thomasen P, Qvortrup K (2013) Oxygenated fixation demonstrates novel and improved ultrastructural features of the human endolymphatic sac. Laryngoscope 123:1967–1975CrossRefPubMedGoogle Scholar
  29. Pfister M, Thiele H, Van Camp G, Fransen E, Apaydin F, Aydin O, Leistenschneider P, Devoto M, Zenner HP, Blin N, Nürnberg P, Ozkarakas H, Kupka S (2004) A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations. Cell Physiol Biochem 14:369–376CrossRefPubMedGoogle Scholar
  30. Prieto JJ, Rueda J, Merchan JA (1990) Two different secretion mechanisms in the inner ear’s interdental cells. Hear Res 45:51–61CrossRefPubMedGoogle Scholar
  31. Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A, Glueckert R (2012) Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec (Hoboken) 295:1791–1811CrossRefGoogle Scholar
  32. Richardson GP, Russell IJ, Duance VC, Bailey AJ (1987) Polypeptide composition of the mammalian tectorial membrane. Hear Res 25:45–60CrossRefPubMedGoogle Scholar
  33. Richardson GP, Lukashkin AN, Russell IJ (2008) The tectorial membrane: one slice of a complex cochlear sandwich. Curr Opin Otolaryngol Head Neck Surg 16:458–464PubMedCentralCrossRefPubMedGoogle Scholar
  34. Richter CP, Emadi G, Getnick G, Quesnel A, Dallos P (2007) Tectorial membrane stiffness gradients. Biophys J 93:2265–2276PubMedCentralCrossRefPubMedGoogle Scholar
  35. Rubio ME, Rueda J, Prieto JJ, Merchán JA (1994) Pilocarpine-induced changes in the saccharide composition of the tectorial membrane and interdental cells of the organ of Corti: a study with gold-labeled lectins. J Histochem Cytochem 42:405–16CrossRefPubMedGoogle Scholar
  36. Russell IJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, Richardson GP (2007) Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 10:215–23PubMedCentralCrossRefPubMedGoogle Scholar
  37. Santi PA, Lease MK, Harrison RG, Wicker EM (1990) Ultrastructure of proteoglycans in the tectorial membrane. J Electron Microsc Tech 15:293–300CrossRefPubMedGoogle Scholar
  38. Sellon JB, Ghaffari R, Farrahi S, Richardson GP, Freeman DM (2014) Porosity controls spread of excitation in tectorial membrane traveling waves. Biophys J 106:1406–1413PubMedCentralCrossRefPubMedGoogle Scholar
  39. Simmler MC, Cohen-Salmon M, El-Amraoui A, Guillaud L, Benichou JC, Petit C, Panthier JJ (2000) Targeted disruption of otog results in deafness and severe imbalance. Nat Genet 24:139–143CrossRefPubMedGoogle Scholar
  40. Spoendlin H, Schrott A (1988) The spiral ganglion and the innervation of the human organ of Corti. Acta Otolaryngol 105:403–410CrossRefPubMedGoogle Scholar
  41. Steel KP (1983) The tectorial membrane of mammals. Hear Res 9:327–359CrossRefPubMedGoogle Scholar
  42. Tanaka K, Smith CA (1975) Structure of the avian tectorial membrane. Ann Otol Rhinol Laryngol 84:287–296CrossRefPubMedGoogle Scholar
  43. Teudt IU, Richter CP (2014) Basilar Membrane and Tectorial Membrane Stiffness in the CBA/CaJ Mouse. J Assoc Res Otolaryngol 15:675–694PubMedCentralCrossRefPubMedGoogle Scholar
  44. Thorn L, Arnold W, Schinko I, Wetzstein R (1979) The limbus spiralis and its relationship to the developing tectorial membrane in the cochlear duct of the Guinea pig fetus. Anat Embryol (Berl) 155:303–310CrossRefGoogle Scholar
  45. Tylstedt S, Kinnefors A, Rask-Andersen H (1997) Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol 117:505–512CrossRefPubMedGoogle Scholar
  46. Voldrich L (1967) Morphology and function of the epithelium of the limbus spiralis cochleae. Acta Otolaryngol 63:503–514CrossRefPubMedGoogle Scholar
  47. Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, Schatteman I, Verstreken M, Van Hauwe P, Coucke P, Chen A, Smith RJ, Somers T, Offeciers FE, Van de Heyning P, Richardson GP, Wachtler F, Kimberling WJ, Willems PJ, Govaerts PJ, Van Camp G (1998) Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet 19:60–62CrossRefPubMedGoogle Scholar
  48. Verpy E, Masmoudi S, Zwaenepoel I, Leibovici M, Hutchin TP, Del Castillo I, Nouaille S, Blanchard S, Laine S, Popot JL, Moreno F, Mueller RF, Petit C (2001) Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet 29:345–349CrossRefPubMedGoogle Scholar
  49. Zheng J, Miller KK, Yang T, Hildebrand MS, Shearer AE, DeLuca AP, Scheetz TE, Drummond J, Scherer SE, Legan PK, Goodyear RJ, Richardson GP, Cheatham MA, Smith RJ, Dallos P (2011) Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proc Natl Acad Sci U S A 108:4218–4223PubMedCentralCrossRefPubMedGoogle Scholar
  50. Zwaenepoel I, Mustapha M, Leibovici M, Verpy E, Goodyear R, Liu XZ, Nouaille S, Nance WE, Kanaan M, Avraham KB, Tekaia F, Loiselet J, Lathrop M, Richardson G, Petit C (2002) Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proc Natl Acad Sci U S A 99:6240–6245PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hisamitsu Hayashi
    • 1
    • 2
    Email author
  • Annelies Schrott-Fischer
    • 3
  • Rudolf Glueckert
    • 3
    Email author
  • Wei Liu
    • 4
  • Willi Salvenmoser
    • 5
  • Peter Santi
    • 6
  • Helge Rask-Andersen
    • 1
  1. 1.Department of Surgical Sciences, Head and Neck Surgery, section of OtolaryngologyUppsala University HospitalUppsalaSweden
  2. 2.Department of OtolaryngologyGifu University Graduate School of MedicineGifuJapan
  3. 3.Department of OtolaryngologyMedical University of InnsbruckInnsbruckAustria
  4. 4.Department of Surgical Sciences, Section of OtolaryngologyUppsala University HospitalUppsalaSweden
  5. 5.Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
  6. 6.Department of OtolaryngologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations