Advertisement

Cell and Tissue Research

, Volume 362, Issue 1, pp 87–96 | Cite as

Epigallocatechin-3-gallate-induced free-radical production upon adipogenic differentiation in bovine bone-marrow mesenchymal stem cells

  • Jin Young Jeong
  • Mi Na Park
  • Eun Seok Cho
  • Hyun-Jun Jang
  • Sungkwon Park
  • Hyun-Jeong LeeEmail author
Regular Article

Abstract

Epigallocatechin-3-gallate (EGCG), a major component of catechin in green tea, has known effects on cancer, diabetes and obesity. We recently reported that the expression levels of various genes and proteins involved in adipogenesis decreases following EGCG treatment. We also assessed apoptosis in EGCG-exposed cells. Here, we explore the variability in free-radical production in bovine bone-marrow mesenchymal stem cells (BMSCs) treated with EGCG. Upon adipogenic differentiation, BMSCs were exposed to various EGCG concentrations (0, 0.1, 1, 5, or 10 μM) for 2, 4, or 6 days. We found that EGCG reduced cell viability and arrested the cell cycle at the gap 2/mitosis phase and that EGCG potentially enhanced the production of free radicals, including reactive oxygen species and reactive nitrogen species, in a concentration- and time-dependent manner. Immunostaining revealed that the expression of genes encoding CCAAT/enhancer-binding protein alpha and stearoyl-CoA desaturase were diminished by EGCG treatment. These findings suggest that EGCG alters free-radical production activity during adipogenic differentiation in BMSCs.

Keywords

Adipogenic differentiation Bone-marrow mesenchymal stem cells Epigallocatechin-3-gallate Free radicals Bovine 

Supplementary material

441_2015_2191_Fig7_ESM.gif (19 kb)
Fig. S1

Cell viability was measured using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay during adipogenic differentiation of bovine bone-marrow mesenchymal stem cells (BMSCs). The effect of epigallocatechin-3-gallate (EGCG) on adipogenic differentiation was not concentration- or time-dependent. We observed an effect only at a high EGCG concentration (10 μM). The x-axis shows the EGCG concentrations and the y-axis shows the percentage of viable cells. Values represent means ± standard error means (SEM). The letters in superscript indicate significant between-group differences (p < 0.05). (GIF 18 kb)

441_2015_2191_MOESM1_ESM.tif (2.5 mb)
High resolution image (TIFF 2585 kb)

References

  1. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14CrossRefPubMedGoogle Scholar
  2. Bylund J, Brown KL, Movitz C, Dahlgren C, Karlsson A (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic Biol Med 49:1834–1845CrossRefPubMedGoogle Scholar
  3. Byun JK, Yoon BY, Jhun JY, Oh HJ, Kim EK, Min JK, Cho ML (2014) Epigallocatechin-3-gallate ameliorates both obesity and autoinflammatory arthritis aggravated by obesity by altering the balance among CD4(+) T-cell subsets. Immunol Lett 157:51–59CrossRefPubMedGoogle Scholar
  4. Chan CY, Wei L, Castro-Muñozledo F, Koo WL (2011) (−)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci 89:779–785CrossRefPubMedGoogle Scholar
  5. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824CrossRefPubMedGoogle Scholar
  6. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72CrossRefPubMedGoogle Scholar
  7. Farabegoli F, Papi A, Orlandi M (2011) (−)-Epigallocatechin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen-resistant cells. Biosci Rep 31:99–108CrossRefPubMedGoogle Scholar
  8. Findeisen HM, Gizard F, Zhao Y, Qing H, Heywood EB, Jones KL, Cohn D, Bruemmer D (2011) Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol 31:851–860PubMedCentralCrossRefPubMedGoogle Scholar
  9. Glynn MW, McAllister AK (2006) Immunocytochemistry and quantification of protein colocalization in cultured neurons. Nat Protoc 1:1287–1296CrossRefPubMedGoogle Scholar
  10. Graugnard DE, Piantoni P, Bionaz M, Berger LL, Faulkner DB, Loor JJ (2009) Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus x Simmental cattle fed high-starch or low-starch diets. BMC Genomics 10:142PubMedCentralCrossRefPubMedGoogle Scholar
  11. Hsuuw YD, Chan WH (2007) Epigallocatechin gallate dose-dependently induces apoptosis or necrosis in human MCF-7 cells. Ann N Y Acad Sci 1095:428–440CrossRefPubMedGoogle Scholar
  12. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, Kao YH (2005) Antimitogenic effect of green tea (−)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol 288:C1094–C1108CrossRefPubMedGoogle Scholar
  13. James AW (2013) Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo) 2013:684736Google Scholar
  14. Jeong JY, Suresh S, Jang M, Park MN, Gobianand K, You S, Yeon SH, Lee HJ (2014) Epigallocatechin-3-gallate suppresses the lipid deposition through the apoptosis during differentiation in bovine bone marrow mesenchymal stem cells. Cell Biol Int 39:52–64PubMedCentralCrossRefPubMedGoogle Scholar
  15. Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21:86–102CrossRefPubMedGoogle Scholar
  16. Khanna RD, Karki K, Pande D, Negi R, Khanna RS (2014) Inflammation, free radical damage, oxidative stress and cancer. Interdiscip J Microinflammation 1:109Google Scholar
  17. Kim H, Sakamoto K (2012) (−)-Epigallocatechin gallate suppresses adipocyte differentiation through the MEK/ERK and PI3K/Akt pathways. Cell Biol Int 36:147–153CrossRefPubMedGoogle Scholar
  18. Kim SJ, Lee JH, Kim BS, So HS, Park R, Myung NY, Um JY, Hong SH (2012) (−)-Epigallocatechin-3-gallate protects against NO-induced ototoxicity through the regulation of caspase- 1, caspase-3, and NF-κB activation. PLoS One 7:e43967PubMedCentralCrossRefPubMedGoogle Scholar
  19. Klaus S, Pültz S, Thöne-Reineke C, Wolfram S (2005) Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes 29:615–623CrossRefGoogle Scholar
  20. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH (2009) Green tea (−)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol 297:C121–C132CrossRefPubMedGoogle Scholar
  21. Lee H, Bae S, Yoon Y (2013) The anti-adipogenic effects of (−)epigallocatechin gallate are dependent on the WNT/β-catenin pathway. J Nutr Biochem 24:1232–1240CrossRefPubMedGoogle Scholar
  22. Li GX, Chen YK, Hou Z, Xiao H, Jin H, Lu G, Lee MJ, Liu B, Guan F, Yang Z, Yu A, Yang CS (2010) Pro-oxidative activities and dose–response relationship of (−)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: a comparative study in vivo and in vitro. Carcinogenesis 31:902–910PubMedCentralCrossRefPubMedGoogle Scholar
  23. Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496CrossRefPubMedGoogle Scholar
  24. MacDougald OA, Burant CF (2005) Fickle factor foils fat fate. Nat Cell Biol 7:543–545CrossRefPubMedGoogle Scholar
  25. Mielgo-Ayuso J, Barrenechea L, Alcorta P, Larrarte E, Margareto J, Labayen I (2014) Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial. Br J Nutr 111:1263–1271CrossRefPubMedGoogle Scholar
  26. Moon HS, Lee HG, Choi YJ, Kim TG, Cho CS (2007) Proposed mechanisms of (−)-epigallocatechin-3-gallate for anti-obesity. Chem Biol Interact 167:85–98CrossRefPubMedGoogle Scholar
  27. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal 21:66–85PubMedCentralCrossRefPubMedGoogle Scholar
  28. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  29. Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M (2006) Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibROSis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55:2502–2509CrossRefPubMedGoogle Scholar
  30. Rayalam S, Della-Fera MA, Baile CA (2008) Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem 19:717–726CrossRefPubMedGoogle Scholar
  31. Renno WM, Al-Maghrebi M, Alshammari A, George P (2013) (−)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int 62:221–231CrossRefPubMedGoogle Scholar
  32. Saito Y, Nishio K, Ogawa Y, Kimata J, Kinumi T, Yoshida Y, Noguchi N, Niki E (2006) Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res 40:619–630CrossRefPubMedGoogle Scholar
  33. Schreml S, Babilas P, Fruth S, Orsó E, Schmitz G, Mueller MB, Nerlich M, Prantl L (2009) Harvesting human adipose tissue-derived adult stem cells: resection versus liposuction. Cytotherapy 11:947–957CrossRefPubMedGoogle Scholar
  34. Shin J, Li B, Davis ME, Suh Y, Lee K (2009) Comparative analysis of fatty acid-binding protein 4 promoters: conservation of peroxisome proliferator-activated receptor binding sites. J Anim Sci 87:3923–3934CrossRefPubMedGoogle Scholar
  35. Simmons DJ, Seitz P, Kidder L, Klein GL, Waeltz M, Gundberg CM, Tabuchi C, Yang C, Zhang RW (1991) Partial characterization of rat marrow stromal cells. Calcif Tissue Int 48:326–334CrossRefPubMedGoogle Scholar
  36. Sung HY, Hong CG, Suh YS, Cho HC, Park JH, Bae JH, Park WK, Han J, Song DK (2010) Role of (−)-epigallocatechin-3-gallate in cell viability, lipogenesis, and retinol-binding protein 4 expression in adipocytes. Naunyn Schmiedebergs Arch Pharmacol 382:303–310CrossRefPubMedGoogle Scholar
  37. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefPubMedGoogle Scholar
  38. Vigouroux C, Caron-Debarle M, Le Dour C, Magré J, Capeau J (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43:862–876CrossRefPubMedGoogle Scholar
  39. Wang X, Hao MW, Dong K, Lin F, Ren JH, Zhang HZ (2009) Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Arch Pharm Res 32:1263–1269CrossRefPubMedGoogle Scholar
  40. Weinreb O, Amit T, Mandel S, Youdim MB (2009) Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 4:283–296PubMedCentralCrossRefPubMedGoogle Scholar
  41. Wu BT, Hung PF, Chen HC, Huang RN, Chang HH, Kao YH (2005) The apoptotic effect of green tea (−)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Cdk2 pathway. J Agric Food Chem 53:5695–5701CrossRefPubMedGoogle Scholar
  42. Yang J, Li L, Tan S, Jin H, Qiu J, Mao Q, Li R, Xia C, Jiang ZH, Jiang S, Liu S (2012) A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection. Fitoterapia 83:348–355CrossRefPubMedGoogle Scholar
  43. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jin Young Jeong
    • 1
    • 2
  • Mi Na Park
    • 2
  • Eun Seok Cho
    • 4
  • Hyun-Jun Jang
    • 5
  • Sungkwon Park
    • 3
  • Hyun-Jeong Lee
    • 2
    Email author
  1. 1.Animal Products Utilization DivisionNational Institute of Animal Science, Rural Development AdministrationWanju-gunRepublic of Korea
  2. 2.Division of Animal Genomics and Bioinformatics, National Institute of Animal ScienceRural Development AdministrationWanju-gunRepublic of Korea
  3. 3.Department of Food Science and TechnologySejong UniversitySeoulRepublic of Korea
  4. 4.Department of Animal Resources Development Swine Science DivisionNational Institute of Animal Science, Rural Development AdminstrationCheonan-cityRepublic of Korea
  5. 5.College of PhamacyDankook UniversityCheonanRepublic of Korea

Personalised recommendations