Advertisement

Cell and Tissue Research

, Volume 362, Issue 1, pp 163–176 | Cite as

Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes

  • Moran Homola
  • Martina Pfeffer
  • Claudia Fischer
  • Herbert Zimmermann
  • Simon C. Robson
  • Horst-Werner KorfEmail author
Regular Article

Abstract

Extracellular purines (ATP, ADP, AMP and adenosine) are important signaling molecules in the CNS. Levels of extracellular purines are regulated by enzymes located at the cell surface referred to as ectonucleotidases. Time-dependent changes in their expression could profoundly influence the availability of extracellular purines and thereby purinergic signaling. Using radioactive in situ hybridization, we analyzed the mRNA distribution of the enzymes NTPDase1, -2 and -3 and ecto-5′-nucleotidase in the prosencephalon of two mouse strains: melatonin-proficient C3H and melatonin-deficient C57Bl. The mRNAs of these enzymes were localized to specific brain regions, such as hippocampus, striatum, medial habenula and ventromedial hypothalamus. NTPDase3 expression was more widely distributed than previously thought. All ectonucleotidases investigated revealed a prominent time-dependent expression pattern. In C3H, the mRNA expression of all four enzymes gradually increased during the day and peaked during the night. In contrast, in C57Bl, ecto-5′-nucleotidase expression peaked at the beginning of the day and gradually decreased to trough levels at night. Recording of locomotor activity revealed higher daytime activity of C57Bl than of C3H. Our results indicate that the expression of ectonucleotidases varies according to time and genotype and suggest that melatonin exerts modulatory effects associated with different regulations of purinergic signaling in the brain. These findings provide an important basis for further examination of the complexity of the purinergic system in the brain.

Keywords

Adenosine Circadian Ecto-5′-nucleotidase NTPDase1-3 Purinergic signaling 

Abbreviations

AD

Anterodorsal thalamic nucleus

Arc

Arcuate nucleus

AV

Anteroventral thalamic nucleus

CA

Cornu ammonis

CeC and CeL

Capsular and lateral central amygdala

CeM

Medial central amygdala

Cg

Cingulate cortex

CP

Choroid plexus

CT

Circadian time

DG

Dentate gyrus

Dk

Nucleus of Darkschewitsch

DM

Dorsomedial hypothalamic nucleus

eN

Ecto-5′-nucleotidase

FC

Fasciola cinerea

GP

Globus pallidus

IG

Indusium griseum

IPAC

Interstitial nucleus of the posterior limb of the anterior commissure

ISH

In situ hybridization

KO

Knock out

LHb

Lateral habenula

LV

Lateral ventricle

MeP

Posterior medial amygdala

MHb

Medial habenula

NTPDase

Nucleoside triphosphate diphosphohydrolase

Pir

Piriform cortex

PMD

Premammillary nucleus dorsal

PMV

Premammillary nucleus ventral

Po

Posterior thalamic nuclear group

PT

Hypophysial pars tuberalis

PVA

Anterior paraventricular thalamic nucleus

PVN

Hypothalamic paraventricular nucleus

Rt

Reticular thalamic nucleus

SCN

Suprachiasmatic nucleus

SFO

Subfornical organ

sm

Stria medullaris

SN

Substantia nigra

SON

Supraoptic nucleus

STh

Subthalamic nucleus

SVZ

Subventricular zone

TS

Triangular septal nucleus

3V

Third ventricle

VMH

Ventromedial hypothalamic nucleus

VP

Ventral posterior thalamic nucleus

VPPC

Ventral posterior parvicellular thalamic nucleus

WT

Wild-type

ZI

Zona incerta

Notes

Acknowledgments

This work has been supported by the Dr. Senckenbergische Stiftung, Frankfurt am Main. We would like to thank Dr. Hanns Ackermann (Institute for Biostatistics und Mathematic Modelling, Goethe University, Frankfurt am Main, Germany) for his kind help with the statistical analyses.

References

  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29CrossRefPubMedGoogle Scholar
  2. Ackermann H (1991) BIAS. A program package for biometrical analysis of samples. Comput Stat Data Anal 11:223–224 [current program version: 10.02 epsilon]CrossRefGoogle Scholar
  3. Augusto E, Matos M, Sevigny J, El-Tayeb A, Bynoe MS, Muller CE, Cunha RA, Chen J (2013) Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci 33:11390–11399PubMedCentralCrossRefPubMedGoogle Scholar
  4. Belcher S, Zsarnovszky A, Crawford P, Hemani H, Spurling L, Kirley T (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep–wake behaviors. Neuroscience 137:1331–1346CrossRefPubMedGoogle Scholar
  5. Bjelobaba I, Stojiljkovic M, Pekovic S, Dacic S, Lavrnja I, Stojkov D, Rakic L, Nedeljkovic N (2007) Immunohistological determination of ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and 5′-nucleotidase in rat hippocampus reveals overlapping distribution. Cell Mol Neurobiol 27:731–743CrossRefPubMedGoogle Scholar
  6. Braun N, Sévigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H (2000) Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 12:4357–4366PubMedGoogle Scholar
  7. Braun N, Sévigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364CrossRefPubMedGoogle Scholar
  8. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):172–181Google Scholar
  9. Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42:3–8CrossRefPubMedGoogle Scholar
  10. Burnstock G, Verkhratsky A (2012) Purinergic signalling and the nervous system. Springer, HeidelbergCrossRefGoogle Scholar
  11. Chatterjee S, Thyagarajan K, Kesarwani P, Song JH, Soloshchenko M, Fu J, Bailey SR, Vasu C, Kraft AS, Paulos CM, Yu XZ, Mehrotra S (2014) Reducing CD73 expression by IL1β-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res 74:6048–6059CrossRefPubMedGoogle Scholar
  12. Cunha RA, Brendel P, Zimmermann H, Ribeiro JA (2000) Immunologically distinct isoforms of ecto-5′-nucleotidase in nerve terminals of different areas of the rat hippocampus. J Neurochem 74:334–338CrossRefPubMedGoogle Scholar
  13. Deaglio S, Robson SC (2011) Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol 61:301–332CrossRefPubMedGoogle Scholar
  14. Detanico BC, de Souza A, Medeiros LF, Rozisky JR, Caumo W, Hidalgo MPL, Battastini AMO, Torres ILS (2010) 24-hour temporal pattern of NTPDase and 5′-nucleotidase enzymes in rat blood serum. Chronobiol Int 27:1751–1761CrossRefPubMedGoogle Scholar
  15. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55CrossRefPubMedGoogle Scholar
  16. Ena SL, De Backer J, Schiffmann SN, de Kerchove d’Exaerde A (2013) FACS array profiling identifies ecto-5′ nucleotidase as a striatopallidal neuron-specific gene involved in striatal-dependent learning. J Neurosci 33:8794–8809CrossRefPubMedGoogle Scholar
  17. Figueiró F, Mendes FB, Corbelini PF, Janarelli F, Jandrey EH, Russowsky D, Eifler-Lima VL, Battastini AM (2014) A monastrol-derived compound, LaSOM 63, inhibits ecto-5′nucleotidase/CD73 activity and induces apoptotic cell death of glioma cell lines. Anticancer Res 34:1837–1842PubMedGoogle Scholar
  18. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  19. Gampe K, Hammer K, Kittel Á, Zimmermann H (2012) The medial habenula contains a specific nonstellate subtype of astrocyte expressing the ectonucleotidase NTPDase2. Glia 60:1860–1870CrossRefPubMedGoogle Scholar
  20. Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H (2014) NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells 33:253–264CrossRefGoogle Scholar
  21. Goto M, Matsuo H, Iigo M, Furuse M, Korf HW, Yasuo S (2013) Melatonin-induced changes in the expression of thyroid hormone-converting enzymes in hypothalamus depend on the timing of melatonin injections and genetic background in mice. Gen Comp Endocrinol 186:33–40CrossRefPubMedGoogle Scholar
  22. Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39CrossRefPubMedGoogle Scholar
  23. Korf HW, von Gall C (2006) Mice, melatonin and the circadian system. Mol Cell Endocrinol 252:57–68CrossRefPubMedGoogle Scholar
  24. Korf HW, von Gall C, Stehle J (2003) The circadian system and melatonin: lessons from rats and mice. Chronobiol Int 20:697–710CrossRefPubMedGoogle Scholar
  25. Kukulski F, Lévesque SA, Sévigny J (2011) Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol 61:263–299CrossRefPubMedGoogle Scholar
  26. Kulesskaya N, Võikar V, Peltola M, Yegutkin GG, Salmi M, Jalkanen S, Rauvala H (2013) CD73 is a major regulator of adenosinergic signalling in mouse brain. PLoS ONE 8:e66896PubMedCentralCrossRefPubMedGoogle Scholar
  27. Langer D, Hammer K, Koszalka P, Schrader J, Robson SC, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217CrossRefPubMedGoogle Scholar
  28. Mackiewicz M, Nikonova EV, Zimmerman JE, Galante RJ, Zhang L, Cater JR, Geiger JD, Pack AI (2003) Enzymes of adenosine metabolism in the brain: diurnal rhythm and the effect of sleep deprivation. J Neurochem 85:348–357CrossRefPubMedGoogle Scholar
  29. Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:9325–9330PubMedCentralCrossRefPubMedGoogle Scholar
  30. Mimee A, Smith PM, Ferguson AV (2013) Circumventricular organs: targets for integration of circulating fluid and energy balance signals? Physiol Behav 121:96–102CrossRefPubMedGoogle Scholar
  31. Mutafova-Yambolieva VN, Durnin L (2014) The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 144:162–191CrossRefPubMedGoogle Scholar
  32. Petrovic-Djergovic D, Hyman MC, Ray JJ, Bouis D, Visovatti SH, Hayasaki T, Pinsky DJ (2012) Tissue-resident ecto-5′ nucleotidase (CD73) regulates leukocyte trafficking in the ischemic brain. J Immunol 188:2387–2398PubMedCentralCrossRefPubMedGoogle Scholar
  33. Pfeffer M, Rauch A, Korf HW, von Gall C (2012) The Endogenous Melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Chronobiol Int 29:415–429CrossRefPubMedGoogle Scholar
  34. Porkka-Heiskanen T, Strecker R, McCarley R (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517CrossRefPubMedGoogle Scholar
  35. Radulovacki M (1985) Role of adenosine in sleep in rats. Rev Clin Basic Pharm 5:327–339PubMedGoogle Scholar
  36. Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD (1984) Adenosine analogs and sleep in rats. J Pharmacol Exp Ther 228:268–274PubMedGoogle Scholar
  37. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430PubMedCentralCrossRefPubMedGoogle Scholar
  38. Shukla V, Zimmermann H, Wang L, Kettenmann H, Raab S, Hammer K, Sévigny J, Robson SC, Braun N (2005) Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. J Neurosci Res 80:600–610CrossRefPubMedGoogle Scholar
  39. Thom VT, Wendel M, Deussen A (2013) Regulation of ecto-5′-nucleotidase by docosahexaenoic acid in human endothelial cells. Cell Physiol Biochem 32:355–366CrossRefPubMedGoogle Scholar
  40. Ticho SR, Radulovacki M (1991) Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav 40:33–40CrossRefPubMedGoogle Scholar
  41. Vandenbeuch A, Anderson CB, Parnes J, Enjyoji K, Robson SC, Finger TE, Kinnamon SC (2013) Role of the ectonucleotidase NTPDase2 in taste bud function. Proc Natl Acad Sci U S A 110:14789–14794PubMedCentralCrossRefPubMedGoogle Scholar
  42. Virus RM, Djuricic-Nedelson M, Radulovacki M, Green RD (1983) The effects of adenosine and 2′-deoxycoformycin on sleep and wakefulness in rats. Neuropharmacology 22:1401–1404CrossRefPubMedGoogle Scholar
  43. von Gall C, Duffield GE, Hastings MH, Kopp MD, Dehghani F, Korf HW, Stehle JH (1998) CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci 18:10389–10397Google Scholar
  44. von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevét P, Korf HW, Stehle JH (2000) Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. Eur J Neurosci 12:964–972CrossRefGoogle Scholar
  45. Vongtau HO, Lavoie EG, Sévigny J, Molliver DC (2011) Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 193:387–398PubMedCentralCrossRefPubMedGoogle Scholar
  46. Vorhoff T, Zimmermann H, Pelletier J, Sévigny J, Braun N (2005) Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: Predicted secondary structure and relation to other members of the E-NTPDase family and actin. Purinergic Signal 1:259–270PubMedCentralCrossRefPubMedGoogle Scholar
  47. Wicht H, Korf HW, Ackermann H, Ekhart D, Fischer C, Pfeffer M (2014) Chronotypes and rhythm stability in mice. Chronobiol Int 31:27–36CrossRefPubMedGoogle Scholar
  48. Wink MR, Tamajusuku AS, Braganhol E, Casali EA, Barreto-Chaves ML, Sarkis JJ, Battastini AM (2003) Thyroid hormone upregulates ecto-5′- nucleotidase/CD73 in C6 rat glioma cells. Mol Cell Endocrinol 205:107–114CrossRefPubMedGoogle Scholar
  49. Yasuo S, Yoshimura T, Ebihara S, Korf HW (2009) Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J Neurosci 29:2885–2889CrossRefPubMedGoogle Scholar
  50. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309CrossRefPubMedGoogle Scholar
  51. Zimmermann H, Vogel M, Laube U (1993) Hippocampal localization of 5′-nucleotidase as revealed by immunocytochemistry. Neuroscience 55:105–112CrossRefPubMedGoogle Scholar
  52. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502PubMedCentralCrossRefPubMedGoogle Scholar
  53. Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17:188–196PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Moran Homola
    • 1
  • Martina Pfeffer
    • 1
  • Claudia Fischer
    • 1
  • Herbert Zimmermann
    • 2
  • Simon C. Robson
    • 3
  • Horst-Werner Korf
    • 1
    Email author
  1. 1.Institute of Anatomy II, Dr. Senckenbergisches Chronomedizinisches Institut (SCI), Goethe UniversityFrankfurt am MainGermany
  2. 2.Institute of Cell Biology and Neuroscience, Molecular and Cellular NeurobiologyGoethe UniversityFrankfurt am MainGermany
  3. 3.Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations