Cell and Tissue Research

, Volume 362, Issue 1, pp 201–213 | Cite as

Alteration in the podoplanin–ezrin–cytoskeleton linkage is an important initiation event of the podocyte injury in puromycin aminonucleoside nephropathy, a mimic of minimal change nephrotic syndrome

  • Koichi Suzuki
  • Yoshiyasu Fukusumi
  • Mihoko Yamazaki
  • Hiroshi Kaneko
  • Kazushi Tsuruga
  • Hiroshi Tanaka
  • Etsuro Ito
  • Katsuyuki Matsui
  • Hiroshi KawachiEmail author
Regular Article


Podoplanin was identified as a protein associated with the transformation of arborized foot processes of glomerular epithelial cells (podocytes) to flat feet. However, the function of podoplanin in the podocyte is not yet fully clarified. In this study, we analyzed the molecular nature of podoplanin, and its expression in rat nephrotic models and patients with minimal change nephrotic syndrome (MCNS). We demonstrated here that podoplanin has two forms: one contains abundant sialic acid and the other a lesser amount of sialic acid. Podoplanin bound ezrin to interact with the cytoskeleton. The silencing of podoplanin in cultured podocytes caused a change in the cell shape and the distribution of ezrin and actin. The expression of podoplanin was clearly reduced before the onset of proteinuria in puromycin aminonucleoside (PAN) nephropathy, a mimic of MCNS, and the decrease in the expression of podoplanin became more evident at the proteinuric stage. Podoplanin was detected in normal urine samples, and the amount of urinary podoplanin markedly increased on day 1 of PAN nephropathy. Urinary ezrin was also detected. The amount of the phosphorylated ezrin was reduced, while the amount of the podoplanin-interacting ezrin increased. The podoplanin expression was reduced in a patient with active-phase MCNS. It is conceivable that the alteration of the podoplanin–ezrin–cytoskeleton linkage is an important event of the podocyte injury in MCNS.


Proteinuria Podocyte Nephrotic syndrome Glycoprotein Sialic acid 



This work was supported by Grant-Aids for Scientific Research (B: 23390224 to H.K.) and Grant-Aid for Young Scientists (B: 24790839 to Y.F.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors wish to thank Ms. Mutsumi Kayaba and Ms. Yukina Kitazawa for their excellent technical assistance and Mr. Masaaki Nameta for his help in the electron microscopic analysis.

Supplementary material

441_2015_2178_Fig7_ESM.gif (108 kb)
Supplementary Figure S1

a Full gels of western blot findings of podoplanin and actin of PAN nephropathy shown in Fig. 2d. b Full gels of western blot findings of podoplanin and actin of ADR nephropathy shown in Fig. 2d. c Full gels of western blot findings of podoplanin of PAN nephropathy (left panel) and ADR nephropathy (right panel) shown in Fig. 3. d The larger gels of western blot findings of podoplanin (right panel), actin (center) and ezrin (right panel) shown in Fig. 5d (GIF 108 kb)

441_2015_2178_MOESM1_ESM.tif (9.6 mb)
High Resolution Image (TIFF 9798 kb)


  1. Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage? J Am Soc Nephrol 17:2974–2984CrossRefPubMedGoogle Scholar
  2. Bertani T, Cutillo F, Zoja C, Broggini M, Remuzzi G (1986) Tubulo-interstitial lesions mediate renal damage in adriamycin glomerulopathy. Kidney Int 30:488–496CrossRefPubMedGoogle Scholar
  3. Bertram JF, Messina A, Ryan GB (1990) In vitro effects of puromycin aminonucleoside on the ultrastructure of rat glomerular podocytes. Cell Tissue Res 260:555–563CrossRefPubMedGoogle Scholar
  4. Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, Schaffner G, Kerjaschki D (1997) Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 151:1141–1152PubMedCentralPubMedGoogle Scholar
  5. Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394PubMedCentralCrossRefPubMedGoogle Scholar
  6. Charest PM, Roth J (1985) Localization of sialic acid in kidney glomeruli: regionalization in the podocyte plasma membrane and loss in experimental nephrosis. Proc Natl Acad Sci U S A 82:8508–8512PubMedCentralCrossRefPubMedGoogle Scholar
  7. Clegg GR, Tyrrell C, McKechnie SR, Beers MF, Harrison D, McElroy MC (2005) Coexpression of RTI40 with alveolar epithelial type II cell proteins in lungs following injury: identification of alveolar intermediate cell types. Am J Physiol Lung Cell Mol Physiol 289:L382–390CrossRefPubMedGoogle Scholar
  8. Doublier S, Ruotsalainen V, Salvidio G, Lupia E, Biancone L, Conaldi PG, Reponen P, Tryggvason K, Camussi G (2001) Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am J Pathol 158:1723–1731PubMedCentralCrossRefPubMedGoogle Scholar
  9. Fishman JA, Karnovsky MJ (1985) Effects of the aminonucleoside of puromycin on glomerular epithelial cells in vitro. Am J Pathol 118:398–407PubMedCentralPubMedGoogle Scholar
  10. Han GD, Koike H, Nakatsue T, Suzuki K, Yoneyama H, Narumi S, Kobayashi N, Mundel P, Shimizu F, Kawachi H (2003) IFN-inducible protein-10 has a differential role in podocyte during Thy 1.1 glomerulonephritis. J Am Soc Nephrol 14:3111–3126CrossRefPubMedGoogle Scholar
  11. Hashimoto T, Karasawa T, Saito A, Miyauchi N, Han GD, Hayasaka K, Shimizu F, Kawachi H (2007) Ephrin-B1 localizes at the slit diaphragm of the glomerular podocyte. Kidney Int 72:954–964CrossRefPubMedGoogle Scholar
  12. Hugo C, Nangaku M, Shankland SJ, Pichler R, Gordon K, Amieva MR, Couser WG, Furthmayr H, Johnson RJ (1998) The plasma membrane-actin linking protein, ezrin, is a glomerular epithelial cell marker in glomerulogenesis, in the adult kidney and in glomerular injury. Kidney Int 54:1934–1944CrossRefPubMedGoogle Scholar
  13. Kawachi H, Shimizu F (2000) Molecular composition and function of the slit diaphragm: nephrin, the molecule responsible for proteinuria. Clin Exp Nephrol 4:161–172CrossRefGoogle Scholar
  14. Kawachi H, Orikasa M, Matsui K, Iwanaga T, Toyabe S, Oite T, Shimizu F (1992) Epitope-specific induction of mesangial lesions with proteinuria by a MoAb against mesangial cell surface antigen. Clin Exp Immunol 88:399–404PubMedCentralCrossRefPubMedGoogle Scholar
  15. Kawachi H, Koike H, Kurihara H, Yaoita E, Orikasa M, Shia MA, Sakai T, Yamamoto T, Salant DJ, Shimizu F (2000) Cloning of rat nephrin: expression in developing glomeruli and in proteinuric states. Kidney Int 57:1949–1961CrossRefPubMedGoogle Scholar
  16. Kawachi H, Koike H, Kurihara H, Sakai T, Shimizu F (2003) Cloning of rat homologue of podocin: expression in proteinuric states and in developing glomeruli. J Am Soc Nephrol 14:46–56CrossRefPubMedGoogle Scholar
  17. Kerjaschki D (2001) Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 108:1583–1587PubMedCentralCrossRefPubMedGoogle Scholar
  18. Kerjaschki D, Sharkey DJ, Farquhar MG (1984) Identification and characterization of podocalyxin–the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol 98:1591–1596CrossRefPubMedGoogle Scholar
  19. Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G, Laakkonen P, Petrova T, Langer B, Raab I (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15:603–612CrossRefPubMedGoogle Scholar
  20. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582CrossRefPubMedGoogle Scholar
  21. Kriz W, Gretz N, Lemley KV (1998a) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54:687–697CrossRefPubMedGoogle Scholar
  22. Kriz W, Kobayashi N, Elger M (1998b) New aspects of podocyte structure, function, and pathology. Clin Exp Nephrol 2:85–99CrossRefGoogle Scholar
  23. Macconi D, Bonomelli M, Benigni A, Plati T, Sangalli F, Longaretti L, Conti S, Kawachi H, Hill P, Remuzzi G, Remuzzi A (2006) Pathophysiologic implications of reduced podocyte number in a rat model of progressive glomerular injury. Am J Pathol 168:42–54PubMedCentralCrossRefPubMedGoogle Scholar
  24. Mahtab EA, Wijffels MC, Van Den Akker NM, Hahurij ND, Lie-Venema H, Wisse LJ, Deruiter MC, Uhrin P, Zaujec J, Binder BR, Schalij MJ, Poelmann RE, Gittenberger-De Groot AC (2008) Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn 237:847–857CrossRefPubMedGoogle Scholar
  25. Martin-Villar E, Scholl FG, Gamallo C, Yurrita MM, Munoz-Guerra M, Cruces J, Quintanilla M (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 113:899–910CrossRefPubMedGoogle Scholar
  26. Matsui K, Breiteneder-Geleff S, Kerjaschki D (1998a) Epitope-specific antibodies to the 43-kD glomerular membrane protein podoplanin cause proteinuria and rapid flattening of podocytes. J Am Soc Nephrol 9:2013–2026Google Scholar
  27. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S (1998b) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657PubMedCentralCrossRefPubMedGoogle Scholar
  28. Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S, Geleff S, Kang DH, Johnson RJ, Kerjaschki D (2003) Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J Am Soc Nephrol 14:1981–1989CrossRefPubMedGoogle Scholar
  29. Michael AF, Blau E, Vernier RL (1970) Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Inves J Tech Methods Pathol 23:649–657Google Scholar
  30. Miyauchi N, Saito A, Karasawa T, Harita Y, Suzuki K, Koike H, Han GD, Shimizu F, Kawachi H (2006) Synaptic vesicle protein 2B is expressed in podocyte, and its expression is altered in proteinuric glomeruli. J Am Soc Nephrol 17:2748–2759CrossRefPubMedGoogle Scholar
  31. Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13:3005–3015CrossRefPubMedGoogle Scholar
  32. Mundel P, Reiser J, Zuniga Mejia Borja A, Pavenstadt H, Davidson GR, Kriz W, Zeller R (1997) Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236:248–258CrossRefPubMedGoogle Scholar
  33. Nakatsue T, Koike H, Han GD, Suzuki K, Miyauchi N, Yuan H, Salant DJ, Gejyo F, Shimizu F, Kawachi H (2005) Nephrin and podocin dissociate at the onset of proteinuria in experimental membranous nephropathy. Kidney Int 67:2239–2253CrossRefPubMedGoogle Scholar
  34. Okuda S, Oh Y, Tsuruda H, Onoyama K, Fujimi S, Fujishima M (1986) Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease. Kidney Int 29:502–510CrossRefPubMedGoogle Scholar
  35. Orlando RA, Takeda T, Zak B, Schmieder S, Benoit VM, McQuistan T, Furthmayr H, Farquhar MG (2001) The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin. J Am Soc Nephrol 12:1589–1598PubMedGoogle Scholar
  36. Otaki Y, Miyauchi N, Higa M, Takada A, Kuroda T, Gejyo F, Shimizu F, Kawachi H (2008) Dissociation of NEPH1 from nephrin is involved in development of a rat model of focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 295:F1376–1387CrossRefPubMedGoogle Scholar
  37. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307CrossRefPubMedGoogle Scholar
  38. Ryan GB, Karnovsky MJ (1975) An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephrosis. Kidney Int 8:219–232CrossRefPubMedGoogle Scholar
  39. Saito A, Miyauchi N, Hashimoto T, Karasawa T, Han GD, Kayaba M, Sumi T, Tomita M, Ikezumi Y, Suzuki K, Koitabashi Y, Shimizu F, Kawachi H (2011) Neurexin-1, a presynaptic adhesion molecule, localizes at the slit diaphragm of the glomerular podocytes in kidneys. Am J Physiol Regul Integr Comp Physiol 300:R340–348CrossRefPubMedGoogle Scholar
  40. Scholl FG, Gamallo C, Vilaro S, Quintanilla M (1999) Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci 112:4601–4613PubMedGoogle Scholar
  41. Shankland SJ (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69:2131–2147CrossRefPubMedGoogle Scholar
  42. Smoyer WE, Mundel P (1998) Regulation of podocyte structure during the development of nephrotic syndrome. J Mol Med 76:172–183CrossRefPubMedGoogle Scholar
  43. Somlo S, Mundel P (2000) Getting a foothold in nephrotic syndrome. Nat Genet 24:333–335CrossRefPubMedGoogle Scholar
  44. Takeda T, Go WY, Orlando RA, Farquhar MG (2000) Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell 11:3219–3232PubMedCentralCrossRefPubMedGoogle Scholar
  45. Takeda T, McQuistan T, Orlando RA, Farquhar MG (2001) Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J Clin Invest 108:289–301PubMedCentralCrossRefPubMedGoogle Scholar
  46. Tryggvason K (1999) Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J Am Soc Nephrol 10:2440–2445PubMedGoogle Scholar
  47. Vanderbilt JN, Allen L, Gonzalez RF, Tigue Z, Edmondson J, Ansaldi D, Gillespie AM, Dobbs LG (2008) Directed expression of transgenes to alveolar type I cells in the mouse. Am J Respir Cell Mol Biol 39:253–262PubMedCentralCrossRefPubMedGoogle Scholar
  48. Weening JJ, Rennke HG (1983) Glomerular permeability and polyanion in adriamycin nephrosis in the rat. Kidney Int 24:152–159CrossRefPubMedGoogle Scholar
  49. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272CrossRefPubMedGoogle Scholar
  50. Zhu L, Zhou R, Mettler S, Wu T, Abbas A, Delaney J, Forte JG (2007) High turnover of ezrin T567 phosphorylation: conformation, activity, and cellular function. Am J Physiol Cell Physiol 293:C874–884CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Koichi Suzuki
    • 1
    • 2
  • Yoshiyasu Fukusumi
    • 1
  • Mihoko Yamazaki
    • 1
  • Hiroshi Kaneko
    • 1
  • Kazushi Tsuruga
    • 2
  • Hiroshi Tanaka
    • 2
  • Etsuro Ito
    • 2
  • Katsuyuki Matsui
    • 3
  • Hiroshi Kawachi
    • 1
    Email author
  1. 1.Department of Cell Biology, Institute of NephrologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
  3. 3.Department of Internal Medicine IVTeikyo University School of MedicineKawasakiJapan

Personalised recommendations