Cell and Tissue Research

, Volume 361, Issue 2, pp 401–410 | Cite as

Regulatory effect of chemokines in bone marrow niche

  • Ahmad Ahmadzadeh
  • Richard E. Kast
  • Neda Ketabchi
  • Saeid Shahrabi
  • Mohammad Shahjahani
  • Kaveh Jaseb
  • Najmaldin Saki


Chemokines secreted from different cellular components of bone marrow (BM) play an important role in the formation of the BM niche system. The hematopoietic stem cell (HSC) pool located in specialized anatomical sites within the BM is subjected to a complex network of chemokines, such that the produced chemokines affect the fate of these cells. Expression of different chemokine receptors on leukemic stem cells (LSCs) uncovers the critical role of chemokines in the maintenance, survival and fate of these cells in the leukemic niche. As a pre-metastatic niche rich in a variety of chemokines, the BM niche is turned into a locus of tumor cell development and division. The chemokine receptors expressed on the surface of metastatic cells lead to their metastasis and homing to the BM niche. Knowledge of chemokines and their receptors leads to the production of various therapeutic antagonists at chemokine receptors expressed on leukemic and tumor cells, enabling interference with chemokine function as a therapeutic tool. New findings suggest that miRNAs, with their specific inhibitory function, affect the ability of producing and expressing chemokines and chemokine receptors. This review focuses on the emerging role of chemokines and their receptors in normal and pathologic conditions of the BM niche, and also discusses the new therapeutic methods with this background.


Chemokines Stem cell niche Hematopoietic stem cells Metastasis 



We are grateful to all our colleagues in the Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy.

Authors’ contributions

Najmaldin Saki and Richard E. Kast conceived the manuscript and revised it; Neda Ketabchi, Mohammad Shahjahani and Ahmad Ahmadzadeh wrote the manuscript; Kaveh Jaseb and Saeid Shahrabi contributors helped writing final version of manuscript.

Conflict of interest

The authors declare no conflict of interest.


  1. Abroun S (2008) Chemokines in homeostasis and cancers. Yakhteh Med J 10:155–166Google Scholar
  2. Arabanian LS, Fierro FA, Stölzel F, Heder C, Poitz DM, Strasser RH, Wobus M, Bornhäuser M, Ferrer RA, Platzbecker U (2014) miRNA-23a mediates post-transcriptional regulation of CXCL12 in bone marrow stromal cells. Haematol Haematol 99:997–1005, 2013.097675Google Scholar
  3. Asirvatham AJ, Magner WJ, Tomasi TB (2009) miRNA regulation of cytokine genes. Cytokine 45:58–69PubMedCentralPubMedGoogle Scholar
  4. Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N (2013) Bone marrow neoplastic niche in leukemia. Hematology 19:232–238PubMedGoogle Scholar
  5. Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47:1127–1137PubMedGoogle Scholar
  6. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550PubMedGoogle Scholar
  7. Balkwill FR (2012) The chemokine system and cancer. J Pathol 226:148–157PubMedGoogle Scholar
  8. Bast RC Jr, Urban N, Shridhar V, Smith D, Zhang Z, Skates S, Lu K, Liu J, Fishman D, Mills G (2002) Early detection of ovarian cancer: promise and reality. Cancer Treat Res 107:61–97PubMedGoogle Scholar
  9. Bissels U, Bosio A, Wagner W (2012) MicroRNAs are shaping the hematopoietic landscape. Haematologica 97:160–167PubMedCentralPubMedGoogle Scholar
  10. Borish LC, Steinke JW (2003) Cytokines and chemokines. J Allergy Clin Immunol 111(2):S460–S475PubMedGoogle Scholar
  11. Browne G, Taipaleenmäki H, Stein GS, Stein JL, Lian JB (2014) MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab 25:6Google Scholar
  12. Broxmeyer HE (2008) Chemokines in hematopoiesis. Curr Opin Hematol 15:49–58PubMedGoogle Scholar
  13. Burger J, Peled A (2009) CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23:43–52PubMedGoogle Scholar
  14. Bydlowski SP, Levy D, Ruiz JM, Pereira J (2013) Hematopoietic stem cell niche: role in normal and malignant hematopoiesis: In: Alimoghaddam K (ed) Stem cell biology in normal life and diseases, vol V.InTech, Rijeka, pp 17–32Google Scholar
  15. Calvi LM, Link DC (2014) Cellular complexity of the bone marrow hematopoietic stem cell niche. Calcif Tissue Int 94:112–124PubMedCentralPubMedGoogle Scholar
  16. Cao H, Oteiza A, Nilsson SK (2013) Understanding the role of the microenvironment during definitive hemopoietic development. Exp Hematol 41:761–768PubMedGoogle Scholar
  17. Chinni SR, Sivalogan S, Dong Z, Deng X, Bonfil RD, Cher ML (2006) CXCL12/CXCR4 signaling activates Akt‐1 and MMP‐9 expression in prostate cancer cells: the role of bone microenvironment‐associated CXCL12. Prostate 66:32–48PubMedGoogle Scholar
  18. Choong ML, Yong YP, Tan AC, Luo B, Lodish HF (2004) LIX: a chemokine with a role in hematopoietic stem cells maintenance. Cytokine 25:239–245PubMedGoogle Scholar
  19. Chotinantakul K, Leeanansaksiri W (2012) Hematopoietic stem cell development, niches, and signaling pathways. Bone Marrow Res 2012:270425PubMedCentralPubMedGoogle Scholar
  20. Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 32:1074–1082Google Scholar
  21. Crews LA, Jamieson CH (2013) Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett 338:15–22PubMedGoogle Scholar
  22. Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochimica et Biophysica Acta (BBA)-reviews on. Cancer 1806:42–49Google Scholar
  23. Doan P, Chute J (2012) The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26:54–62PubMedGoogle Scholar
  24. Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 208:421–428PubMedCentralPubMedGoogle Scholar
  25. Ema H, Suda T (2012) Two anatomically distinct niches regulate stem cell activity. Blood 120:2174–2181PubMedGoogle Scholar
  26. Grassi F, Piacentini A, Cristino S, Toneguzzi S, Cavallo C, Facchini A, Lisignoli G (2003) Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochem Cell Biol 120:391–400PubMedGoogle Scholar
  27. Graves DT, Jiang Y, Valente AJ (1999) The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Front Biosci 4:D571–D580PubMedGoogle Scholar
  28. Hanoun M, Frenette PS (2013) This niche is a maze; an amazing niche. Cell Stem Cell 12:391–392PubMedCentralPubMedGoogle Scholar
  29. Haylock DN, Nilsson SK (2006) Osteopontin: a bridge between bone and blood. Br J Haematol 134:467–474PubMedGoogle Scholar
  30. Hoggatt J, Pelus LM (2011) Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Stem Cell Res Ther 2:13PubMedCentralPubMedGoogle Scholar
  31. Hoggatt J, Scadden DT (2012) The stem cell niche: tissue physiology at a single cell level. J Clin Invest 122:3029PubMedCentralPubMedGoogle Scholar
  32. Huang X, Cho S, Spangrude G (2007) Hematopoietic stem cells: generation and self-renewal. Cell Death Differ 14:1851–1859PubMedGoogle Scholar
  33. Jamieson WL, Shimizu S, D’Ambrosio JA, Meucci O, Fatatis A (2008) CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 68:1715–1722PubMedCentralPubMedGoogle Scholar
  34. Jamieson-Gladney WL, Zhang Y, Fong AM, Meucci O, Fatatis A (2011) The chemokine receptor CX3CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res 13:R91PubMedCentralPubMedGoogle Scholar
  35. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44:1–8PubMedCentralPubMedGoogle Scholar
  36. Johnson EL, Singh S, Johnson-Holiday C, Singh UP, Partridge EE, Datta MW, Lillard JW (2006) CCL25-CCR9 axis role in ovarian cancer cell metastasis and survival. Proc Am Assoc Cancer Res 2006:70Google Scholar
  37. Kalinkovich A, Spiegel A, Shivtiel S, Kollet O, Jordaney N, Piacibello W, Lapidot T (2009) Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun 23:1059–1065PubMedGoogle Scholar
  38. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529PubMedGoogle Scholar
  39. Kaplan RN, Psaila B, Lyden D (2007) Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 13:72–81PubMedGoogle Scholar
  40. Karnoub AE, Weinberg RA (2007) Chemokine networks and breast cancer metastasis. Breast Dis 26:75–85Google Scholar
  41. Kim S-J, Shin J-Y, Lee K-D, Bae Y-K, Sung KW, Nam SJ, Chun K-H (2012) MicroRNA let-7a suppresses breast cancer cell migration and invasion through downregulation of CC chemokine receptor type 7. Breast Cancer Res 14:R14PubMedCentralPubMedGoogle Scholar
  42. Klarenbeek A, Maussang D, Blanchetot C, Saunders M, van der Woning S, Smit M, de Haard H, Hofman E (2013) Targeting chemokines and chemokine receptors with antibodies. Drug Discov Today Technol 9:e237–e244Google Scholar
  43. Krause DS, Scadden DT, Preffer FI (2013) The hematopoietic stem cell niche—home for friend and foe? Cytometry B 84:7–20Google Scholar
  44. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedGoogle Scholar
  45. Kulbe H, Levinson NR, Balkwill F, Wilson JL (2004) The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol 48:489–496PubMedGoogle Scholar
  46. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643PubMedGoogle Scholar
  47. Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E, Biffoni M, Nuzzolo ER, Billi M, Foà R (2008) A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10:788–801PubMedGoogle Scholar
  48. Lean JM, Murphy C, Fuller K, Chambers TJ (2002) CCL9/MIP‐1γ and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem 87:386–393PubMedGoogle Scholar
  49. Liang Z, Bian X, Shim H (2014) Inhibition of breast cancer metastasis with microRNA-302a by downregulation of CXCR4 expression. Breast Cancer Res Treat 146:535–542PubMedCentralPubMedGoogle Scholar
  50. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction–mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560PubMedGoogle Scholar
  51. Lisignoli G, Toneguzzi S, Piacentini A, Cattini L, Lenti A, Tschon M, Cristino S, Grassi F, Facchini A (2003) Human osteoblasts express functional CXC chemokine receptors 3 and 5: activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and β‐N‐acetylhexosaminidase release. J Cell Physiol 194:71–79PubMedGoogle Scholar
  52. Liu Z, Sall A, Yang D (2008) MicroRNA: an emerging therapeutic target and intervention tool. Int J Mol Sci 9:978–999PubMedCentralPubMedGoogle Scholar
  53. López-Giral S, Quintana NE, Cabrerizo M, Alfonso-Pérez M, Sala-Valdés M, de Soria VGG, Fernández-Rañada JM, Fernández-Ruiz E, Muñoz C (2004) Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J Leukoc Biol 76:462–471PubMedGoogle Scholar
  54. Lu X, Kang Y (2009) Chemokine (CC motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284:29087–29096PubMedCentralPubMedGoogle Scholar
  55. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A, Zhang J (2009) Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 26:161–169PubMedGoogle Scholar
  56. Luis T, Killmann NM, Staal F (2012) Signal transduction pathways regulating hematopoietic stem cell biology: introduction to a series of spotlight reviews. Leukemia 26:86–90PubMedGoogle Scholar
  57. Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20:254–257PubMedGoogle Scholar
  58. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21:27–39PubMedGoogle Scholar
  59. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526PubMedGoogle Scholar
  60. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334PubMedCentralPubMedGoogle Scholar
  61. Motabi IH, DiPersio JF (2012) Advances in stem cell mobilization. Blood Rev 26:267–278PubMedGoogle Scholar
  62. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedGoogle Scholar
  63. Musrap N, Diamandis EP (2012) Revisiting the complexity of the ovarian cancer microenvironment—clinical implications for treatment strategies. Mol Cancer Res 10:1254–1264PubMedGoogle Scholar
  64. Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, Sakurai H, Yoshie O, Saiki I (2006) RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 23:9–18PubMedGoogle Scholar
  65. Nwajei F, Konopleva M (2013) The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol 2013, 953982PubMedCentralPubMedGoogle Scholar
  66. Papachristou DJ, Basdra EK, Papavassiliou AG (2012) Bone metastases: molecular mechanisms and novel therapeutic interventions. Med Res Rev 32:611–636PubMedGoogle Scholar
  67. Peled A, Tavor S (2013) Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 3:34PubMedCentralPubMedGoogle Scholar
  68. Pelus LM, Fukuda S (2006) Peripheral blood stem cell mobilization: the CXCR2 ligand GROβ rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 34:1010–1020PubMedGoogle Scholar
  69. Pelus L, Fukuda S (2008) Chemokine-mobilized adult stem cells; defining a better hematopoietic graft. Leukemia 22:466–473PubMedCentralPubMedGoogle Scholar
  70. Pelus LM, Horowitz D, Cooper SC, King AG (2002) Peripheral blood stem cell mobilization: a role for CXC chemokines. Crit Rev Oncol Hematol 43:257–275PubMedGoogle Scholar
  71. Pillai MM, Yang X, Balakrishnan I, Bemis L, Torok-Storb B (2010) MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS ONE 5:e14304PubMedCentralPubMedGoogle Scholar
  72. Pontikoglou C, Deschaseaux F, Sensebé L, Papadaki HA (2011) Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev Rep 7:569–589Google Scholar
  73. Rankin SM (2012) Chemokines and adult bone marrow stem cells. Immunol Lett 145:47–54PubMedGoogle Scholar
  74. Reiland J, Furcht LT, McCarthy JB (1999) CXC‐chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 41:78–88PubMedGoogle Scholar
  75. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242PubMedGoogle Scholar
  76. Ruddy MJ, Shen F, Smith JB, Sharma A, Gaffen SL (2004) Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment. J Leukoc Biol 76:135–144PubMedGoogle Scholar
  77. Saba F, Soleimani M, Atashi A, Mortaz E, Shahjahani M, Roshandel E, Jaseb K, Saki N (2013) The role of the nervous system in hematopoietic stem cell mobilization. Lab Hematol 19:8–16PubMedGoogle Scholar
  78. Saki N, Abroun S, Hagh MF, Asgharei F (2011) Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J (Yakhteh) 13:131Google Scholar
  79. Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS (2013) Chemokines in tumor progression and metastasis. Oncotarget 4:2171PubMedCentralPubMedGoogle Scholar
  80. Sceneay J, Smyth MJ, Möller A (2013) The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32:449–464PubMedGoogle Scholar
  81. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegué E (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13:285–299PubMedCentralPubMedGoogle Scholar
  82. Schinköthe T, Bloch W, Schmidt A (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206PubMedGoogle Scholar
  83. Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR (2001) Epithelial cancer cell migration a role for chemokine receptors? Cancer Res 61:4961–4965PubMedGoogle Scholar
  84. Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, Bridger G, Balkwill FR (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62:5930–5938PubMedGoogle Scholar
  85. Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, Leiner I, Li MO, Frenette PS, Pamer EG (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34:590–601PubMedCentralPubMedGoogle Scholar
  86. Shi J, Wei Y, Xia J, Wang S, Wu J, Chen F, Huang G, Chen J (2014) CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis. Future Oncol 10:749–759PubMedGoogle Scholar
  87. Shiozawa Y, Pienta KJ, Taichman RS (2011) Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res 17:5553–5558PubMedCentralPubMedGoogle Scholar
  88. Silberstein LE, Lin CP (2013) A New image of the hematopoietic stem cell vascular niche. Cell Stem Cell 13:514–516PubMedCentralPubMedGoogle Scholar
  89. Singh S, Singh UP, Stiles JK, Grizzle WE, Lillard JW (2004) Expression and functional role of CCR9 in prostate cancer cell migration and invasion. Clin Cancer Res 10:8743–8750PubMedGoogle Scholar
  90. Smith JN, Calvi LM (2013) Concise review: current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells. Stem Cells 31:1044–1050PubMedCentralPubMedGoogle Scholar
  91. Su L, Zhang J, Xu H, Wang Y, Chu Y, Liu R, Xiong S (2005) Differential expression of CXCR4 is associated with the metastatic potential of human non–small cell lung cancer cells. Clin Cancer Res 11:8273–8280PubMedGoogle Scholar
  92. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS (2003) Expression of CXCR4 and CXCL12 (SDF‐1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89:462–473PubMedGoogle Scholar
  93. Taubenberger AV (2014) In vitro microenvironments to study breast cancer bone colonisation. Adv Drug Deliv Rev 79-80C:135–144Google Scholar
  94. Tzoneva G, Ferrando AA (2012) Recent advances on NOTCH signaling in T-ALL. CurrTop Microbiol Immunol 360:163–182Google Scholar
  95. Ugarte F, Forsberg EC (2013) Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 32:2535–2547PubMedCentralPubMedGoogle Scholar
  96. Vaday GG, Peehl DM, Kadam PA, Lawrence DM (2006) Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 66:124–134PubMedGoogle Scholar
  97. Velasco-Velázquez M, Pestell RG (2013) The CCL5/CCR5 axis promotes metastasis in basal breast cancer. Oncoimmunology 2:e23660–e23660PubMedCentralPubMedGoogle Scholar
  98. Wang D, Liu D, Gao J, Liu M, Liu S, Jiang M, Liu Y, Zheng D (2013) TRAIL‐induced miR‐146a expression suppresses CXCR4‐mediated human breast cancer migration. FEBS J 280:3340–3353PubMedGoogle Scholar
  99. Winkler IG, Lévesque J-P (2006) Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 34:996–1009PubMedGoogle Scholar
  100. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158PubMedGoogle Scholar
  101. Yin T, Li L (2006) The stem cell niches in bone. J Clin Investig 116:1195–1201PubMedCentralPubMedGoogle Scholar
  102. Yoon K-A, Cho H-S, Shin H-I, Cho J-Y (2012) Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration. Stem Cells Dev 21:3391–3402PubMedCentralPubMedGoogle Scholar
  103. Youn BS, Mantel C, Broxmeyer HE (2000) Chemokines, chemokine receptors and hematopoiesis. Immunol Rev 177:150–174PubMedGoogle Scholar
  104. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG (2010) microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 107:8231–8236PubMedCentralPubMedGoogle Scholar
  105. Zhang Y, Yang P, Wang X-F (2013) Microenvironmental regulation of cancer metastasis by mirnas. Trends Cell Biol 24:153–160PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ahmad Ahmadzadeh
    • 1
  • Richard E. Kast
    • 2
  • Neda Ketabchi
    • 1
  • Saeid Shahrabi
    • 3
  • Mohammad Shahjahani
    • 1
  • Kaveh Jaseb
    • 1
  • Najmaldin Saki
    • 1
  1. 1.Health research institute, Research Center of Thalassemia & HemoglobinopathyAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.IIAIGC Study CenterBurlingtonUSA
  3. 3.Department of Biochemistry and Hematology, Faculty of MedicineSemnan University of Medical SciencesSemnanIran

Personalised recommendations