Cell and Tissue Research

, Volume 360, Issue 2, pp 223–231 | Cite as

Acid-sensing ion channels (ASICs) 2 and 4.2 are expressed in the retina of the adult zebrafish

  • E. Viña
  • V. Parisi
  • C. Sánchez-Ramos
  • R. Cabo
  • M. C. Guerrera
  • L. M. Quirós
  • A. Germanà
  • J. A. VegaEmail author
  • O. García-Suárez
Regular Article


Acid-sensing ion channels (ASICs) are H+-gated, voltage-insensitive cation channels involved in synaptic transmission, mechanosensation and nociception. Different ASICs have been detected in the retina of mammals but it is not known whether they are expressed in adult zebrafish, a commonly used animal model to study the retina in both normal and pathological conditions. We study the expression and distribution of ASIC2 and ASIC4 in the retina of adult zebrafish and its regulation by light using PCR, in situ hybridization, western blot and immunohistochemistry. We detected mRNA encoding zASIC2 and zASIC4.2 but not zASIC4.1. ASIC2, at the mRNA or protein level, was detected in the outer nuclear layer, the outer plexiform layer, the inner plexiform layer, the retinal ganglion cell layer and the optic nerve. ASIC4 was expressed in the photoreceptors layer and to a lesser extent in the retinal ganglion cell layer. Furthermore, the expression of both ASIC2 and ASIC4.2 was down-regulated by light and darkness. These results are the first demonstration that ASIC2 and ASIC4 are expressed in the adult zebrafish retina and suggest that zebrafish could be used as a model organism for studying retinal pathologies involving ASICs.


Retina Acid-sensing ion channels Light Zebrafish 



The antibody against ASIC4.2 zebrafish was kindly provided by Dr. Greg Goss, University of Alberta, Canada.

Supplementary material

441_2014_2084_Fig7_ESM.gif (118 kb)
Figure S1

(GIF 118 kb)

441_2014_2084_MOESM1_ESM.tif (610 kb)
High Resolution Image (TIFF 609 kb)
441_2014_2084_Fig8_ESM.gif (169 kb)
Figure S2

(GIF 169 kb)

441_2014_2084_MOESM2_ESM.tif (842 kb)
High Resolution Image (TIFF 841 kb)
441_2014_2084_Fig9_ESM.gif (324 kb)
Figure S3

(GIF 323 kb)

441_2014_2084_MOESM3_ESM.tif (1.8 mb)
High Resolution Image (TIFF 1828 kb)
441_2014_2084_Fig10_ESM.gif (321 kb)
Figure S4

(GIF 321 kb)

441_2014_2084_MOESM4_ESM.tif (1.6 mb)
High Resolution Image (TIFF 1686 kb)
441_2014_2084_MOESM5_ESM.doc (116 kb)
ESM 1 (DOC 115 kb)


  1. Bibliowicz J, Tittle RK et al (2011) Toward a better und erstanding of human eye disease insights from the zebrafish, Danio rerio. Prog Mol Biol Transl Sci 100:287–330CrossRefPubMedCentralPubMedGoogle Scholar
  2. Brockway LM, Zhou ZH et al (2002) Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 283:C126–C134CrossRefPubMedGoogle Scholar
  3. Chen X, Polleichtner G et al (2007) Zebrafish and sensing ion channe (ASIC) 4 characterization of homo- and heteromic channels, and identification of regions important for activation by H+. J Biol Chem 282:30406–30413CrossRefPubMedGoogle Scholar
  4. Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Trends Neurosci 15:396–402CrossRefPubMedGoogle Scholar
  5. Collery RF, Cederlund ML et al (2006) Applying transgenic zebrafish technology to study the retina. Adv Exp Med Biol 572:201–207CrossRefPubMedGoogle Scholar
  6. Del Valle ME, Cobo T et al (2012) Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins. Microsc Res Tech 75:1033–1043CrossRefPubMedGoogle Scholar
  7. DeVries SH (2001) Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32:1107–1117CrossRefPubMedGoogle Scholar
  8. Dymowska AK, Schultz AG, Blair SD, Chamot D, Goss GG (2014) Acid-sensing ion channels are involved in epithelial Na + uptake in the rainbow trout Oncorhynchus mykiss. Am J Physiol Cell Physiol 307:C255–C265CrossRefPubMedGoogle Scholar
  9. Ettaiche M, Guy N et al (2004) Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 24:1005–1012CrossRefPubMedGoogle Scholar
  10. Ettaiche M, Deval E et al (2009) Acid-sensing ion channel 3 in retinal function and survival. Invest Ophthalmol Vis Sci 50:2417–2426CrossRefPubMedGoogle Scholar
  11. Fadool JM, Dowling JE (2008) Zebrafish: a model system for the study of eye genetics. Prog Retin Eye Res 27:89–110CrossRefPubMedCentralPubMedGoogle Scholar
  12. Germanà A, Sánchez-Ramos C et al (2010) Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development. J Anat 217:214–222CrossRefPubMedCentralPubMedGoogle Scholar
  13. Gestri G, Link BA et al (2012) The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 72:302–327CrossRefPubMedCentralPubMedGoogle Scholar
  14. Goldsmith P, Harris WA (2003) The zebrafish as a tool for understanding the biology of visual disorders. Semin Cell Dev Biol 14:11–18CrossRefPubMedGoogle Scholar
  15. Golestaneh N, De Kozak Y et al (2001) Epithelial sodium channel and the mineralocorticoid receptor in cultured rat Müller glial cells. Glia 33:160–168CrossRefPubMedGoogle Scholar
  16. Gross JM, Perkins BD (2008) Zebrafish mutants as models for congenital ocular disorders in humans. Mol Reprod Dev 75:547–555CrossRefPubMedGoogle Scholar
  17. Hildebrand MS, de Silva MG et al (2004) Characterisation of DRASIC in the mouse inner ear. Hear Res 190:149–160CrossRefPubMedGoogle Scholar
  18. Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 194:283–332CrossRefPubMedGoogle Scholar
  19. Holzer P (2011) Acid sensing by visceral afferent neurones. Acta Physiol 201:63–75CrossRefGoogle Scholar
  20. Huang AL, Chen X et al (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938CrossRefPubMedCentralPubMedGoogle Scholar
  21. Jusuf PR, Harris WA (2009) Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural Dev 4:34Google Scholar
  22. Kress M, Waldmann R (2006) Acid sensing ionic channels. Curr Top Membr 57:241–276CrossRefGoogle Scholar
  23. Levanti MB, Guerrera MC et al (2011) Acid-sensing ion channel 2 (ASIC2) in the intestine of adult zebrafish. Neurosci Lett 494:24–28CrossRefPubMedGoogle Scholar
  24. Matsuo T (1998) Expression of amiloride-sensitive sodium channel in rat eye. Acta Med Okayama 52(5):279–283PubMedGoogle Scholar
  25. Mirshahi M, Nicolas C et al (1999) Immunochemical analysis of the sodium channel in rodent and human eye. Exp Eye Res 69:21–32CrossRefPubMedGoogle Scholar
  26. Mirshahi M, Golestaneh N et al (2000) Paradoxical effects of mineralocorticoids on the ion gated sodium channel in embryologically diverse cells. Biochem Biophys Res Commun 270:811–815CrossRefPubMedGoogle Scholar
  27. Miyake T, Nishiwaki A et al (2013) Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats. Jpn J Ophthalmol 57:120–125CrossRefPubMedGoogle Scholar
  28. Paukert M, Sidi S et al (2004) A family of acid-sensing ion channels from the zebrafish: widespread expression in the central nervous system suggests a conserved role in neuronal communication. J Biol Chem 279:18783–18791CrossRefPubMedGoogle Scholar
  29. Sánchez-Ramos C, Bonnin-Arias C et al (2013) Light regulates the expression of the BDNF/TrkB system in the adult zebrafish retina. Microsc Res Tech 76:42–49CrossRefPubMedGoogle Scholar
  30. Sherwod TW, Frey EN et al (2012) Structure and activity of the acid sensing Ion channels. Am J PhysiolCell Physiol 303:C699–C710CrossRefGoogle Scholar
  31. Tan J, Ye X et al (2011) Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia. Mol Vis 17:3300–3308PubMedCentralPubMedGoogle Scholar
  32. Tan J, Xu YP et al (2013) Involvement of acid-sensing ion channel 1a in functions of cultured human retinal pigment epithelial cells. J Huazhong Univ Sci Technol Med Sci 33:137–141CrossRefPubMedGoogle Scholar
  33. Viña E, Parisi V et al (2013) Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish. Neurosci Lett 536:35–40CrossRefPubMedGoogle Scholar
  34. Zha XM (2013) Acid-sensing ion channels: trafficking and synaptic function. Mol Brain 6:1CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • E. Viña
    • 1
    • 2
  • V. Parisi
    • 3
  • C. Sánchez-Ramos
    • 4
    • 5
  • R. Cabo
    • 1
  • M. C. Guerrera
    • 3
  • L. M. Quirós
    • 6
  • A. Germanà
    • 3
  • J. A. Vega
    • 1
    • 7
    Email author
  • O. García-Suárez
    • 1
  1. 1.Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de OviedoOviedoSpain
  2. 2.Servicio de Cuidados IntensivosHospital de CabueñesGijónSpain
  3. 3.Dipartimento di Scienze VeterinarieUniversità di MessinaMessinaItaly
  4. 4.Departamento de Óptica II (Optometría y Visión), and Grupo de Neurocomputación y NeurorrobóticaUniversidad Complutense de MadridMadridSpain
  5. 5.Grupo de Neurocomputación y NeurorrobóticaUniversidad Complutense de MadridMadridSpain
  6. 6.Departamento de Biología FuncionalUniversidad de OviedoOviedoSpain
  7. 7.Facultad de Ciencias de la SaludUniversidad Autonoma de ChileTemucoChile

Personalised recommendations