Cell and Tissue Research

, Volume 361, Issue 2, pp 509–528 | Cite as

The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium

  • Eleonora Franzetti
  • Davide Romanelli
  • Silvia Caccia
  • Silvia Cappellozza
  • Terenzio Congiu
  • Muthukumaran Rajagopalan
  • Annalisa Grimaldi
  • Magda de Eguileor
  • Morena CasartelliEmail author
  • Gianluca TettamantiEmail author
Regular Article


The midgut represents the middle part of the alimentary canal and is responsible for nutrient digestion and absorption in insect larva. Despite the growing interest in this organ for different purposes, such as studies on morphogenesis and differentiation, stem cell biology, cell death processes and transport mechanisms, basic information on midgut development is still lacking for a large proportion of insect species. Undoubtedly, this lack of data could hinder the full exploitation of practical applications that involve midgut as their primary target. This may represent in particular a significant problem for Lepidoptera, an insect order that includes some of the most important species of high economic importance. With the aim of overcoming this fragmentation of knowledge, we performed a detailed morphofunctional analysis of the midgut of the silkworm, Bombyx mori, a representative model among Lepidoptera, during its development from the larval up to the adult stage, focusing attention on stem cells. Our data demonstrate stem cell proliferation and differentiation, not only in the larval midgut but also in the pupal and adult midgut epithelium. Moreover, we present evidence for a complex trophic relationship between the dying larval epithelium and the new adult one, which is established during metamorphosis. This study, besides representing the first morphological and functional characterization of the changes that occur in the midgut of a lepidopteron during the transition from the larva to the moth, provides a detailed analysis of the midgut of the adult insect, a stage that has been neglected up to now.


Cell death Insect midgut Lepidoptera Metamorphosis Stem cells 



This work was supported by a grant from the Italian Ministry of University and Research (PRIN 2008, protocol 2008SMMCJY) and by FAR 2013 (University of Insubria) to G.T. The authors wish to thank Dr. Makio Takeda for providing anti-CCAP antibody and Emanuela Mammoliti and Paola D'Antona for technical support.


  1. Akai H (1970) An electron microscopy study of the alimentary canal of the silkworm, Bombyx mori L. I. The ultrastructure of the midgut epithelium. Bull Sericult Exp Sta 24:303–344Google Scholar
  2. Baldwin KM, Hakim R, Loeb M, Sadrud-Din S (1996) Midgut development. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 31–54CrossRefGoogle Scholar
  3. Baton LA, Ranford-Cartwright LC (2007) Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion. J Invertebr Pathol 96:244–254PubMedCrossRefGoogle Scholar
  4. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148PubMedCentralPubMedCrossRefGoogle Scholar
  5. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009a) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Gene Dev 23:2333–2344PubMedCentralPubMedCrossRefGoogle Scholar
  6. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009b) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211PubMedCrossRefGoogle Scholar
  7. Cai MJ, Liu W, He HJ, Wang JX, Zhao XF (2012) Mod(mdg4) participates in hormonally regulated midgut programmed cell death during metamorphosis. Apoptosis 17:1327–1339PubMedCrossRefGoogle Scholar
  8. Cappellozza L, Cappellozza S, Saviane A, Sbrenna G (2005) Artificial diet rearing system for the silkworm Bombyx mori (Lepidoptera: Bombycidae): effect of vitamin C deprivation on larval growth and cocoon production. Appl Entomol Zool 40:405–412CrossRefGoogle Scholar
  9. Casartelli M, Leonardi MG, Fiandra L, Parenti P, Giordana B (2001) Multiple transport pathways for dibasic amino acids in the larval midgut of the silkworm Bombyx mori. Insect Biochem Mol Biol 31:621–632Google Scholar
  10. Cermenati G, Corti P, Caccia S, Giordana B, Casartelli M (2007) A morphological and functional characterization of Bombyx mori larval midgut cells in culture. Invert Surv J 4:119–126Google Scholar
  11. Cioffi M (1979) The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport. Tissue Cell 11:467–479PubMedCrossRefGoogle Scholar
  12. Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343PubMedCentralPubMedCrossRefGoogle Scholar
  13. de Sousa MEC, Wanderley-Teixeira V, Teixeira AAC, de Siqueira HAA, Santos FAB, Alves LC (2009) Ultrastructure of the Alabama argillacea (Hubner) (Lepidoptera: Noctuidae) midgut. Micron 40:743–749PubMedCrossRefGoogle Scholar
  14. Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S (2009) Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19:1741–1746PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dow JAT (1986) Insect midgut function. Adv Insect Physiol 19:187–328CrossRefGoogle Scholar
  16. Endo Y, Nishiitsutsuju-Uwo J (1981) Gut endocrine cells in insects: the ultrastructure of the gut endocrine cells of the lepidopterous species. Biomed Res 2:270–280Google Scholar
  17. Fernandes KM, Neves CA, Serrao JE, Martins GF (2014) Aedes aegypti midgut remodeling during metamorphosis. Parasitol Int 63:506–512PubMedCrossRefGoogle Scholar
  18. Franzetti E, Congiu T, Basso P, de Eguileor M, Tettamanti G (2012a) A new approach for three-dimensional visualization of cryostat sections. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology, vol 1. Microscopy Series. Formatex Research Center, Badajoz, pp 148–153Google Scholar
  19. Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, Deng HM, Cappellozza S, Grimaldi A, Xia Q, Feng Q, Cao Y, Tettamanti G (2012b) Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17:305–324PubMedCrossRefGoogle Scholar
  20. Franzetti E, Romanelli D, Tettamanti G (2014) The key role of autophagy and its relationship with apoptosis in lepidopteran larval midgut remodeling. In: Hayat MA (ed) Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging, vol 3. Elsevier, Amsterdam, pp 333–349CrossRefGoogle Scholar
  21. Giordana B, Leonardi MG, Casartelli M, Consonni P, Parenti P (1998) K(+)-neutral amino acid symport of Bombyx mori larval midgut: a system operative in extreme conditions. Am J Physiol 274:R1361–R1371PubMedGoogle Scholar
  22. Giordana B, Leonardi MG, Tasca M, Villa M, Parenti P (1994) The amino acid/K1 symporters for neutral amino acids along the midgut of lepidopteran larvae: functional differentiations. J Insect Physiol 40:1059–1068CrossRefGoogle Scholar
  23. Giordana B, Sacchi VF, Hanozet GM (1982) Intestinal amino acid absoprtion in lepidopteran larvae. Biochim Biophys Acta 692:81–88CrossRefGoogle Scholar
  24. Gomes FM, Carvalho DB, Peron AC, Saito K, Miranda K, Machado EA (2012) Inorganic polyphosphates are stored in spherites within the midgut of Anticarsia gemmatalis and play a role in copper detoxification. J Insect Physiol 58:211–219PubMedCrossRefGoogle Scholar
  25. Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608PubMedCrossRefGoogle Scholar
  26. Hakim RS, Baldwin KM, Loeb M (2001) The role of stem cells in midgut growth and regeneration. In Vitro Cell Dev Biol Anim 37:338–342PubMedGoogle Scholar
  27. Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20:3021–3027PubMedCrossRefGoogle Scholar
  28. Hoffman KL, Weeks JC (2001) Role of caspases and mitochondria in the steroid-induced programmed cell death of a motoneuron during metamorphosis. Dev Biol 229:517–536PubMedCrossRefGoogle Scholar
  29. Judy KJ, Gilbert LI (1970) Histology of the alimentary canal during the metamorphosis of Hyalophora cecropia (L.). J Morphol 131:277–300CrossRefGoogle Scholar
  30. Leonardi MG, Casartelli M, Parenti P, Giordana B (1998) Evidence for a low-affinity, high-capacity uniport for amino acids in Bombyx mori larval midgut. Am J Physiol 274:R1372–R1375PubMedGoogle Scholar
  31. Levy SM, Falleiros AMF, Gregorio EA, Arrebola NR, Toledo LA (2004) The larval midgut of Anticarsia gemmatalis (Hubner) (Lepidoptera: Noctuidae): light and electron microscopy studies of epithelial cells. Braz J Biol 64:633–638PubMedCrossRefGoogle Scholar
  32. Lipovsek S, Letofsky-Papst I, Hofer F, Pabst MA (2002) Seasonal- and age-dependent changes of the structure and chemical composition of the spherites in the midgut gland of the harvestmen Gyas annulatus (Opiliones). Micron 33:647–654PubMedCrossRefGoogle Scholar
  33. Loeb MJ (2010) Factors affecting proliferation and differentiation of lepidopteran midgut stem cells. Arch Insect Biochem 74:1–16CrossRefGoogle Scholar
  34. Loeb MJ, Clark EA, Blackburn M, Hakim RS, Elsen K, Smagghe G (2003) Stem cells from midguts of Lepidopteran larvae: clues to the regulation of stem cell fate. Arch Insect Biochem Physiol 53:186–198PubMedCrossRefGoogle Scholar
  35. Loeb MJ, Coronel N, Natsukawa D, Takeda M (2004) Implications for the functions of the four known midgut differentiation factors: an immunohistologic study of Heliothis virescens midgut. Arch Insect Biochem Physiol 56:7–20PubMedCrossRefGoogle Scholar
  36. Loeb MJ, Hakim RS (1996) Insect midgut epithelium in vitro: an insect stem cell system. J Insect Physiol 42:1103–1111CrossRefGoogle Scholar
  37. Loeb MJ, Jaffe H, Gelman DB, Hakim RS (1999) Two polypeptide factors that promote differentiation of insect midgut stem cells in vitro. Arch Insect Biochem 40:129–140CrossRefGoogle Scholar
  38. Loeb MJ, Martin PA, Narang N, Hakim RS, Goto S, Takeda M (2001) Control of life, death, and differentiation in cultured midgut cells of the lepidopteran, Heliothis virescens. In Vitro Cell Dev Biol Anim 37:348–352PubMedGoogle Scholar
  39. Malagoli D, Abdalla FC, Cao Y, Feng QL, Fujisaki K, Gregorc A, Matsuo T, Nezis IP, Papassideri IS, Sass M, Silva-Zacarin ECM, Tettamanti G, Umemiya-Shirafuji R (2010) Autophagy and its physiological relevance in arthropods: current knowledge and perspectives. Autophagy 6:575–588PubMedCrossRefGoogle Scholar
  40. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313PubMedCrossRefGoogle Scholar
  41. Nelliot A, Bond N, Hoshizaki DK (2006) Fat-body remodeling in Drosophila melanogaster. Genesis 44:396–400PubMedCrossRefGoogle Scholar
  42. Newmark PA, Sanchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153PubMedCrossRefGoogle Scholar
  43. Pigino G, Migliorini M, Paccagnini E, Bernini F (2006) Localisation of heavy metals in the midgut epithelial cells of Xenillus tegeocranus (Hermann, 1804) (Acari: Oribatida). Ecotoxicol Environ Saf 64:257–263PubMedCrossRefGoogle Scholar
  44. Reali G, Meneghini A, Trevisan M (1985) Bachicoltura moderna. Edagricole, BolognaGoogle Scholar
  45. Romanelli D, Casati B, Franzetti E, Tettamanti G (2014) A molecular view of autophagy in Lepidoptera. BioMed Res Int. doi: 10.1155/2014/902315, Article ID 902315Google Scholar
  46. Russell VW, Dunn PE (1991) Lysozyme in the midgut of Manduca sexta during metamorphosis. Arch Insect Biochem Physiol 17:67–80PubMedCrossRefGoogle Scholar
  47. Rybczynski R (2005) Prothoracic hormone. In: Gilbert LI, Iatrou K, Gill SS (eds) Endocrinology, vol 3, Comprehensive Molecular Insect Science. Elsevier Pergamon, Oxford, pp 61–123Google Scholar
  48. Sadrud-Din S, Hakim R, Loeb M (1994) Proliferation and differentiation of midgut cells from Manduca sexta, in vitro. Invertebr Reprod Dev 26:197–204CrossRefGoogle Scholar
  49. Sadrud-Din S, Loeb M, Hakim R (1996) In vitro differentiation of isolated stem cells from the midgut of Manduca sexta larvae. J Exp Biol 199:319–325PubMedCrossRefGoogle Scholar
  50. Sakai T, Satake H, Minakata H, Takeda M (2004) Characterization of crustacean cardioactive peptide as a novel insect midgut factor: isolation, localization, and stimulation of alpha-amylase activity and gut contraction. Endocrinology 145:5671–5678PubMedCrossRefGoogle Scholar
  51. Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584:4491–4499PubMedCrossRefGoogle Scholar
  52. Spies AG, Spence KD (1985) Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study. Tissue Cell 17:379–394PubMedCrossRefGoogle Scholar
  53. Sumithra P, Britto CP, Krishnan M (2010) Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L. Cell Tissue Res 339:349–358PubMedCrossRefGoogle Scholar
  54. Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B 109:1–62CrossRefGoogle Scholar
  55. Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier Pergamon, Oxford, pp 171–224CrossRefGoogle Scholar
  56. Tettamanti G, Cao Y, Feng Q, Grimaldi A, de Eguileor M (2011) Autophagy in Lepidoptera: more than old wine in new bottle. Invertebr Surv J 8:5–14Google Scholar
  57. Tettamanti G, Casartelli M (2010) Lepidopteran midgut stem cells in culture: a new tool for cell biology and physiological studies. In: Rosales DW, Mullen QN (eds) Pluripotent stem cells. Nova Science Publishers, New York, pp 173–184Google Scholar
  58. Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B, Congiu T, Ferrarese R, Rivas-Pena ML, Pennacchio F, Eguileor M (2007a) Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res 330:345–359PubMedCrossRefGoogle Scholar
  59. Tettamanti G, Grimaldi A, Pennacchio F, de Eguileor M (2007b) Lepidopteran larval midgut during prepupal instar: digestion or self-digestion? Autophagy 3:630–631PubMedCrossRefGoogle Scholar
  60. Tettamanti G, Salo E, Gonzalez-Estevez C, Felix DA, Grimaldi A, de Eguileor M (2008) Autophagy in invertebrates: insights into development, regeneration and body remodeling. Curr Pharm Des 14:116–125PubMedCrossRefGoogle Scholar
  61. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 4:e6225PubMedCentralPubMedCrossRefGoogle Scholar
  62. Tsujita M (1943) Histological and cytological studies of the midgut epithelial cells in the silkworm. Bull Sericult Exp Sta 11:211–293Google Scholar
  63. Turbeck B (1974) A study of the concentrically laminated concretions, 'spherites' in the regenerative cells of the midgut of Lepidopterous larvae. Tissue Cell 6:627–640PubMedCrossRefGoogle Scholar
  64. Uwo MF, Ui-Tei K, Park P, Takeda M (2002) Replacement of midgut epithelium in the greater wax moth, Galleria mellonela, during larval-pupal moult. Cell Tissue Res 308:319–331PubMedCrossRefGoogle Scholar
  65. Waku Y, Sumimoto KI (1971) Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori L.) with special regard to the calcium salt deposits in the cytoplasm. I. Light microscopy. Tissue Cell 3:127–136PubMedCrossRefGoogle Scholar
  66. Waku Y, Sumimoto KI (1974) Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori L.) with special regard to the calcium salt deposits in the cytoplasm. II. Electron microscopy. Tissue Cell 6:127–136PubMedCrossRefGoogle Scholar
  67. Wieczorek H, Grber G, Harvey WR, Huss M, Merzendorfer H, Zeiske W (2000) Structure and regulation of insect plasma membrane H(+)V-ATPase. J Exp Biol 203:127–135PubMedGoogle Scholar
  68. Wigglesworth VB (1972) Digestion and nutrition. The principles of insect physiology. Chapman & Hall, London, pp 476–552CrossRefGoogle Scholar
  69. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 452:143–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Eleonora Franzetti
    • 1
  • Davide Romanelli
    • 1
  • Silvia Caccia
    • 2
    • 3
  • Silvia Cappellozza
    • 4
  • Terenzio Congiu
    • 5
  • Muthukumaran Rajagopalan
    • 1
  • Annalisa Grimaldi
    • 1
  • Magda de Eguileor
    • 1
  • Morena Casartelli
    • 2
    Email author
  • Gianluca Tettamanti
    • 1
    Email author
  1. 1.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
  2. 2.Department of BiosciencesUniversity of MilanoMilanoItaly
  3. 3.Department of AgricultureUniversity of Napoli “Federico II”PorticiItaly
  4. 4.CRA – Honey Bee and Silkworm Research Unit, Padua seatPadovaItaly
  5. 5.Department of Surgical and Morphological SciencesUniversity of InsubriaVareseItaly

Personalised recommendations