Cell and Tissue Research

, Volume 359, Issue 1, pp 255–265 | Cite as

The synaptic proteome

  • Melanie Laßek
  • Jens Weingarten
  • Walter VolknandtEmail author


Synapses are focal hot spots for signal transduction and plasticity in the brain. A synapse comprises an axon terminus, the presynapse, the synaptic cleft containing extracellular matrix proteins as well as adhesion molecules, and the postsynaptic density as target structure for chemical signaling. The proteomes of the presynaptic and postsynaptic active zones control neurotransmitter release and perception. These tasks demand short- and long-term structural and functional dynamics of the synapse mediated by its proteinaceous inventory. This review addresses subcellular fractionation protocols and the related proteomic approaches to the various synaptic subcompartments with an emphasis on the presynaptic active zone (PAZ). Furthermore, it discusses major constituents of the PAZ including the amyloid precursor protein family members. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the pre- and postsynapse. The identification of protein candidates of the synapse provides the basis for further analyzing the interaction of synaptic proteins with their targets, and the effect of their deletion opens novel insights into the functional role of these proteins in neuronal communication. The knowledge of the molecular interactome is also a prerequisite for understanding numerous neurodegenerative diseases.


Postsynaptic active zone Presynaptic active zone Proteome Synapse Transsynaptic signaling 



Cytomatrix assembled at the active zone


Presynaptic active zone


Presynaptic plasma membrane


Postsynaptic density



We thank Dr. Herbert Zimmermann for helpful comments.


  1. Anliker B, Muller U (2006) The functions of mammalian amyloid precursor protein and related amyloid precursor-like proteins. Neurodegener Dis 3:239–246PubMedGoogle Scholar
  2. Bai F, Witzmann FA (2007) Synaptosome proteomics. Subcell Biochem 43:77–98PubMedCentralPubMedGoogle Scholar
  3. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH (1994) Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 14:5223–5235PubMedGoogle Scholar
  4. Barth J, Volknandt W (2011) Proteomic investigations of the synaptic vesicle interactome. Expert Rev Proteomics 8:211–220PubMedGoogle Scholar
  5. Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10:635–646PubMedGoogle Scholar
  6. Bayes A, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS, Grant SG (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14:19–21PubMedCentralPubMedGoogle Scholar
  7. Bayes A, Collins MO, Croning MD, van de Lagemaat LN, Choudhary JS, Grant SG (2012) Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS ONE 7:e46683PubMedCentralPubMedGoogle Scholar
  8. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531PubMedGoogle Scholar
  9. Biesemann C, Gronborg M, Luquet E et al (2014) Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 33:157–170PubMedGoogle Scholar
  10. Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22:5840–5847PubMedGoogle Scholar
  11. Booth RF, Clark JB (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J 176:365–370PubMedCentralPubMedGoogle Scholar
  12. Boyken J, Gronborg M, Riedel D, Urlaub H, Jahn R, Chua JJ (2013) Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78:285–297PubMedGoogle Scholar
  13. Bresler T, Shapira M, Boeckers T, Dresbach T, Futter M, Garner CC, Rosenblum K, Gundelfinger ED, Ziv NE (2004) Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 24:1507–1520PubMedGoogle Scholar
  14. Burre J, Volknandt W (2007) The synaptic vesicle proteome. J Neurochem 101:1448–1462PubMedGoogle Scholar
  15. Burre J, Beckhaus T, Schagger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W (2006) Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 6:6250–6262PubMedGoogle Scholar
  16. Cajal SR (1888) Sobre las fibras nerviosas de la capa molecular del cerebelo. Rev Trim Histol Norm Patol 1:33–49Google Scholar
  17. Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86:831–845PubMedGoogle Scholar
  18. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356PubMedGoogle Scholar
  19. Clarke GL, Chen J, Nishimune H (2012) Presynaptic active zone density during development and synaptic plasticity. Front Mol Neurosci 5:12PubMedCentralPubMedGoogle Scholar
  20. Clift-O’Grady L, Desnos C, Lichtenstein Y, Faundez V, Horng JT, Kelly RB (1998) Reconstitution of synaptic vesicle biogenesis from PC12 cell membranes. Methods 16:150–159PubMedGoogle Scholar
  21. Collins MO, Yu L, Husi H, Blackstock WP, Choudhary JS, Grant SG (2005) Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry. Sci Signal Transduct Knowl Environ 2005:pl6Google Scholar
  22. Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP, Choudhary JS, Grant SG (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(Suppl 1):16–23PubMedGoogle Scholar
  23. Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420PubMedGoogle Scholar
  24. Cotman CW, Banker G, Churchill L, Taylor D (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol 63:441–455PubMedCentralPubMedGoogle Scholar
  25. Cottrell BA, Galvan V, Banwait S et al (2005) A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Ann Neurol 58:277–289PubMedCentralPubMedGoogle Scholar
  26. Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956PubMedGoogle Scholar
  27. Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8:206–220PubMedGoogle Scholar
  28. De Robertis E, Rodriguez De Lores Arnaiz G, Pellegrino De Iraldi A (1962) Isolation of synaptic vesicles from nerve endings of the rat brain. Nature 194:794–795Google Scholar
  29. DeNardo LA, de Wit J, Otto-Hitt S, Ghosh A (2012) NGL-2 regulates input-specific synapse development in CA1 pyramidal neurons. Neuron 76:762–775PubMedGoogle Scholar
  30. Dent EW, Kalil K (2001) Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci 21:9757–9769PubMedGoogle Scholar
  31. Desfrere L, Karlsson M, Hiyoshi H et al (2009) Na,K-ATPase signal transduction triggers CREB activation and dendritic growth. Proc Natl Acad Sci USA 106:2212–2217PubMedCentralPubMedGoogle Scholar
  32. Dosemeci A, Makusky AJ, Jankowska-Stephens E, Yang X, Slotta DJ, Markey SP (2007) Composition of the synaptic PSD-95 complex. Mol Cell Proteomics 6:1749–1760PubMedCentralPubMedGoogle Scholar
  33. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3:1718–1728PubMedGoogle Scholar
  34. Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12:1134–1140PubMedGoogle Scholar
  35. Fabian-Fine R, Volknandt W, Fine A, Stewart MG (2000) Age-dependent pre- and postsynaptic distribution of AMPA receptors at synapses in CA3 stratum radiatum of hippocampal slice cultures compared with intact brain. Eur J Neurosci 12:3687–3700PubMedGoogle Scholar
  36. Falk J, Bonnon C, Girault JA, Faivre-Sarrailh C (2002) F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell Auspices Eur Cell Biol Organ 94:327–334Google Scholar
  37. Farr CD, Gafken PR, Norbeck AD, Doneanu CE, Stapels MD, Barofsky DF, Minami M, Saugstad JA (2004) Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents. J Neurochem 91:438–450PubMedCentralPubMedGoogle Scholar
  38. Ferraguti F, Klausberger T, Cobden P et al (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25:10520–10536PubMedGoogle Scholar
  39. Filiou MD, Bisle B, Reckow S, Teplytska L, Maccarrone G, Turck CW (2010) Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 31:1294–1301PubMedGoogle Scholar
  40. Fogel AI, Akins MR, Krupp AJ, Stagi M, Stein V, Biederer T (2007) SynCAMs organize synapses through heterophilic adhesion. J Neurosci 27:12516–12530PubMedGoogle Scholar
  41. Foster M, assisted by Sherrington CS (1897) A textbook of physiology part three: the central nervous system, 7th edn. MacMillan, LondonGoogle Scholar
  42. Garner CC, Kindler S, Gundelfinger ED (2000) Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 10:321–327PubMedGoogle Scholar
  43. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135PubMedGoogle Scholar
  44. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593PubMedGoogle Scholar
  45. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88PubMedCentralPubMedGoogle Scholar
  46. Gronborg M, Pavlos NJ, Brunk I, Chua JJ, Munster-Wandowski A, Riedel D, Ahnert-Hilger G, Urlaub H, Jahn R (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30:2–12PubMedGoogle Scholar
  47. Guenette S, Chang Y, Hiesberger T, Richardson JA, Eckman CB, Eckman EA, Hammer RE, Herz J (2006) Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J 25:420–431PubMedCentralPubMedGoogle Scholar
  48. Gundelfinger ED, Kessels MM, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4:127–139PubMedGoogle Scholar
  49. Guo Q, Li H, Gaddam SS, Justice NJ, Robertson CS, Zheng H (2012) Amyloid precursor protein revisited: neuron-specific expression and highly stable nature of soluble derivatives. J Biol Chem 287:2437–2445PubMedCentralPubMedGoogle Scholar
  50. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669PubMedGoogle Scholar
  51. Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96:1374–1388PubMedGoogle Scholar
  52. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Sudhof TC (1997) Binding of neuroligins to PSD-95. Science 277:1511–1515PubMedGoogle Scholar
  53. Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3:857–871PubMedGoogle Scholar
  54. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736PubMedGoogle Scholar
  55. Kim S, Burette A, Chung HS et al (2006) NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci 9:1294–1301PubMedGoogle Scholar
  56. Kins S, Lauther N, Szodorai A, Beyreuther K (2006) Subcellular trafficking of the amyloid precursor protein gene family and its pathogenic role in Alzheimer’s disease. Neurodegener Dis 3:218–226PubMedGoogle Scholar
  57. Ko J, Kim S, Chung HS, Kim K, Han K, Kim H, Jun H, Kaang BK, Kim E (2006) SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron 50:233–245PubMedGoogle Scholar
  58. Kogo N, Dalezios Y, Capogna M, Ferraguti F, Shigemoto R, Somogyi P (2004) Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat. Eur J Neurosci 19:2727–2740PubMedGoogle Scholar
  59. Kohli BM, Pflieger D, Mueller LN, Carbonetti G, Aebersold R, Nitsch RM, Konietzko U (2012) Interactome of the amyloid precursor protein APP in brain reveals a protein network involved in synaptic vesicle turnover and a close association with Synaptotagmin-1. J Proteome Res 11:4075–4090PubMedGoogle Scholar
  60. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10:625–632PubMedGoogle Scholar
  61. Korshunova I, Caroni P, Kolkova K, Berezin V, Bock E, Walmod PS (2008) Characterization of BASP1-mediated neurite outgrowth. J Neurosci Res 86:2201–2213PubMedGoogle Scholar
  62. Koticha D, Babiarz J, Kane-Goldsmith N, Jacob J, Raju K, Grumet M (2005) Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186. Mol Cell Neurosci 30:137–148PubMedGoogle Scholar
  63. Lassek M, Weingarten J, Einsfelder U, Brendel P, Muller U, Volknandt W (2013) Amyloid precursor proteins are constituents of the presynaptic active zone. J Neurochem 127:48–56PubMedGoogle Scholar
  64. Lazarov O, Morfini GA, Lee EB et al (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 25:2386–2395PubMedGoogle Scholar
  65. Levy M, Faas GC, Saggau P, Craigen WJ, Sweatt JD (2003) Mitochondrial regulation of synaptic plasticity in the hippocampus. J Biol Chem 278:17727–17734PubMedGoogle Scholar
  66. Li KW, Hornshaw MP, Van Der Schors RC et al (2004) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem 279:987–1002PubMedGoogle Scholar
  67. Li K, Hornshaw MP, van Minnen J, Smalla KH, Gundelfinger ED, Smit AB (2005) Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J Proteome Res 4:725–733PubMedGoogle Scholar
  68. Lorent K, Overbergh L, Moechars D, De Strooper B, Van Leuven F, Van den Berghe H (1995) Expression in mouse embryos and in adult mouse brain of three members of the amyloid precursor protein family, of the alpha-2-macroglobulin receptor/low density lipoprotein receptor-related protein and of its ligands apolipoprotein E, lipoprotein lipase, alpha-2-macroglobulin and the 40,000 molecular weight receptor-associated protein. Neuroscience 65:1009–1025PubMedGoogle Scholar
  69. Lyckman AW, Confaloni AM, Thinakaran G, Sisodia SS, Moya KL (1998) Post-translational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system. J Biol Chem 273:11100–11106PubMedGoogle Scholar
  70. Maas C, Torres VI, Altrock WD et al (2012) Formation of Golgi-derived active zone precursor vesicles. J Neurosci 32:11095–11108PubMedCentralPubMedGoogle Scholar
  71. Marin R, Ramirez CM, Gonzalez M, Gonzalez-Munoz E, Zorzano A, Camps M, Alonso R, Diaz M (2007) Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor alpha in septal and hippocampal neurons. Mol Membr Biol 24:148–160PubMedGoogle Scholar
  72. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249PubMedCentralPubMedGoogle Scholar
  73. Missler M, Sudhof TC, Biederer T (2012) Synaptic cell adhesion. Cold Spring Harb Perspect Biol 4:a005694PubMedCentralPubMedGoogle Scholar
  74. Mohammadi K, Kometiani P, Xie Z, Askari A (2001) Role of protein kinase C in the signal pathways that link Na+/K + -ATPase to ERK1/2. J Biol Chem 276:42050–42056PubMedGoogle Scholar
  75. Morciano M, Burre J, Corvey C, Karas M, Zimmermann H, Volknandt W (2005) Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 95:1732–1745PubMedGoogle Scholar
  76. Morciano M, Beckhaus T, Karas M, Zimmermann H, Volknandt W (2009) The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J Neurochem 108:662–675PubMedGoogle Scholar
  77. Nagy A, Baker RR, Morris SJ, Whittaker VP (1976) The preparation and characterization of synaptic vesicles of high purity. Brain Res 109:285–309PubMedGoogle Scholar
  78. Nelson JC, Stavoe AK, Colon-Ramos DA (2013) The actin cytoskeleton in presynaptic assembly. Cell Adhes Migr 7Google Scholar
  79. Nensa FM, Neumann MH, Schrotter A et al (2014) Amyloid beta A4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain. Mol Cell Proteomics 13:475–488PubMedGoogle Scholar
  80. Norstrom EM, Zhang C, Tanzi R, Sisodia SS (2010) Identification of NEEP21 as a ss-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci 30:15677–15685PubMedCentralPubMedGoogle Scholar
  81. Nyiri G, Cserep C, Szabadits E, Mackie K, Freund TF (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136:811–822PubMedGoogle Scholar
  82. Ohtsuka T (2013) CAST: functional scaffold for the integrity of the presynaptic active zone. Neurosci Res 76:10–15PubMedGoogle Scholar
  83. Okabe S (2007) Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 34:503–518PubMedGoogle Scholar
  84. Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279:21003–21011PubMedGoogle Scholar
  85. Perkins GA, Tjong J, Brown JM, Poquiz PH, Scott RT, Kolson DR, Ellisman MH, Spirou GA (2010) The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J Neurosci 30:1015–1026PubMedCentralPubMedGoogle Scholar
  86. Pfenninger K, Sandri C, Akert K, Eugster CH (1969) Contribution to the problem of structural organization of the presynaptic area. Brain Res 12:10–18PubMedGoogle Scholar
  87. Phillips GR, Huang JK, Wang Y et al (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77PubMedGoogle Scholar
  88. Pitsch J, Opitz T, Borm V, Woitecki A, Staniek M, Beck H, Becker AJ, Schoch S (2012) The presynaptic active zone protein RIM1alpha controls epileptogenesis following status epilepticus. J Neurosci 32:12384–12395PubMedGoogle Scholar
  89. Pocklington AJ, Cumiskey M, Armstrong JD, Grant SG (2006) The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol 2(2006):0023PubMedGoogle Scholar
  90. Ramos-Ortolaza DL, Bushlin I, Abul-Husn N, Annangudi SP, Sweedler J, Devi LA (2010) Quantitative neuroproteomics of the synapse. Methods Mol Biol 615:227–246PubMedCentralPubMedGoogle Scholar
  91. Reinhard C, Hebert SS, De Strooper B (2005) The amyloid-beta precursor protein: integrating structure with biological function. EMBO J 24:3996–4006PubMedCentralPubMedGoogle Scholar
  92. Rietschel B, Arrey TN, Meyer B, Bornemann S, Schuerken M, Karas M, Poetsch A (2009a) Elastase digests: new ammunition for shotgun membrane proteomics. Mol Cell Proteomics 8:1029–1043PubMedCentralPubMedGoogle Scholar
  93. Rietschel B, Bornemann S, Arrey TN, Baeumlisberger D, Karas M, Meyer B (2009b) Membrane protein analysis using an improved peptic in-solution digestion protocol. Proteomics 9:5553–5557PubMedGoogle Scholar
  94. Ring S, Weyer SW, Kilian SB et al (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27:7817–7826PubMedGoogle Scholar
  95. Rossner S, Fuchsbrunner K, Lange-Dohna C, Hartlage-Rubsamen M, Bigl V, Betz A, Reim K, Brose N (2004) Munc13-1-mediated vesicle priming contributes to secretory amyloid precursor protein processing. J Biol Chem 279:27841–27844PubMedGoogle Scholar
  96. Rowland KC, Irby NK, Spirou GA (2000) Specialized synapse-associated structures within the calyx of Held. J Neurosci 20:9135–9144PubMedGoogle Scholar
  97. Sandbrink R, Masters CL, Beyreuther K (1994) APP gene family: unique age-associated changes in splicing of Alzheimer’s betaA4-amyloid protein precursor. Neurobiol Dis 1:13–24PubMedGoogle Scholar
  98. Schmitz D, Mellor J, Frerking M, Nicoll RA (2001) Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 98:11003–11008PubMedCentralPubMedGoogle Scholar
  99. Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res 326:379–391PubMedGoogle Scholar
  100. Schrenk-Siemens K, Perez-Alcala S, Richter J, Lacroix E, Rahuel J, Korte M, Muller U, Barde YA, Bibel M (2008) Embryonic stem cell-derived neurons as a cellular system to study gene function: lack of amyloid precursor proteins APP and APLP2 leads to defective synaptic transmission. Stem Cells 26:2153–2163PubMedGoogle Scholar
  101. Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5:2531–2541PubMedGoogle Scholar
  102. Shigemoto R, Kulik A, Roberts JD, Ohishi H, Nusser Z, Kaneko T, Somogyi P (1996) Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381:523–525PubMedGoogle Scholar
  103. Sihra TS, Rodriguez-Moreno A (2013) Presynaptic kainate receptor-mediated bidirectional modulatory actions: mechanisms. Neurochem Int 62:982–987PubMedGoogle Scholar
  104. Slunt HH, Thinakaran G, Von Koch C, Lo AC, Tanzi RE, Sisodia SS (1994) Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP). J Biol Chem 269:2637–2644PubMedGoogle Scholar
  105. Soba P, Eggert S, Wagner K et al (2005) Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24:3624–3634PubMedCentralPubMedGoogle Scholar
  106. Soltys BJ, Gupta RS (1999) Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci 24:174–177PubMedGoogle Scholar
  107. Sperlagh B, Heinrich A, Csolle C (2007) P2 receptor-mediated modulation of neurotransmitter release-an update. Purinergic Signal 3:269–284PubMedCentralPubMedGoogle Scholar
  108. Sudhof TC (2012) The presynaptic active zone. Neuron 75:11–25PubMedCentralPubMedGoogle Scholar
  109. Sudhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3Google Scholar
  110. Suzuki T, Okumura-Noji K, Tanaka R, Tada T (1994) Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation. J Neurochem 63:1529–1537PubMedGoogle Scholar
  111. Szodorai A, Kuan YH, Hunzelmann S et al (2009) APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 29:14534–14544PubMedCentralPubMedGoogle Scholar
  112. Takamori S, Holt M, Stenius K et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846PubMedGoogle Scholar
  113. Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491PubMedGoogle Scholar
  114. Tannu NS, Hemby SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1:1732–1742PubMedCentralPubMedGoogle Scholar
  115. Tidow H, Aperia A, Nissen P (2010) How are ion pumps and agrin signaling integrated? Trends Biochem Sci 35:653–659PubMedGoogle Scholar
  116. Tienari PJ, De Strooper B, Ikonen E et al (1996) The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein. EMBO J 15:5218–5229PubMedCentralPubMedGoogle Scholar
  117. Tsang CW, Estey MP, DiCiccio JE, Xie H, Patterson D, Trimble WS (2011) Characterization of presynaptic septin complexes in mammalian hippocampal neurons. Biol Chem 392:739–749PubMedGoogle Scholar
  118. van de Goor J, Ramaswami M, Kelly R (1995) Redistribution of synaptic vesicles and their proteins in temperature-sensitive shibire(ts1) mutant Drosophila. Proc Natl Acad Sci USA 92:5739–5743PubMedCentralPubMedGoogle Scholar
  119. van Montfort BA, Canas B, Duurkens R, Godovac-Zimmermann J, Robillard GT (2002) Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 37:322–330PubMedGoogle Scholar
  120. Volknandt W, Karas M (2012) Proteomic analysis of the presynaptic active zone. Exp Brain Res 217:449–461PubMedGoogle Scholar
  121. Volknandt W, Zimmermann H (1986) Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem 47:1449–1462PubMedGoogle Scholar
  122. Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H (2009) Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci 29:10788–10801PubMedCentralPubMedGoogle Scholar
  123. Weingarten J, Lassek M, Mueller BF et al (2014) The proteome of the presynaptic active zone from mouse brain. Mol Cell Neurosci 59C:106–118Google Scholar
  124. Weyer SW, Klevanski M, Delekate A et al (2011) APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J 30:2266–2280PubMedCentralPubMedGoogle Scholar
  125. Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90:293–303PubMedCentralPubMedGoogle Scholar
  126. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592PubMedGoogle Scholar
  127. Wolfe MS, Guenette SY (2007) APP at a glance. J Cell Sci 120:3157–3161PubMedGoogle Scholar
  128. Xie Z, Askari A (2002) Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem FEBS 269:2434–2439Google Scholar
  129. Yang F, He XP, Russell J, Lu B (2003) Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C. J Cell Biol 163:511–523PubMedCentralPubMedGoogle Scholar
  130. Yang G, Gong YD, Gong K et al (2005) Reduced synaptic vesicle density and active zone size in mice lacking amyloid precursor protein (APP) and APP-like protein 2. Neurosci Lett 384:66–71PubMedGoogle Scholar
  131. Yang L, Wang B, Long C, Wu G, Zheng H (2007) Increased asynchronous release and aberrant calcium channel activation in amyloid precursor protein deficient neuromuscular synapses. Neuroscience 149:768–778PubMedCentralPubMedGoogle Scholar
  132. Yao J, Nowack A, Kensel-Hammes P, Gardner RG, Bajjalieh SM (2010) Cotrafficking of SV2 and synaptotagmin at the synapse. J Neurosci 30:5569–5578PubMedCentralPubMedGoogle Scholar
  133. Yoshimura Y, Nomura T, Yamauchi T (1996) Purification and characterization of active fragment of Ca2+/calmodulin-dependent protein kinase II from the post-synaptic density in the rat forebrain. J Biochem 119:268–273PubMedGoogle Scholar
  134. Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T, Yamauchi T (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem 88:759–768PubMedGoogle Scholar
  135. Zampighi GA, Fisher RS (1997) Polyhedral protein cages encase synaptic vesicles and participate in their attachment to the active zone. J Struct Biol 119:347–359PubMedGoogle Scholar
  136. Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC (2001) Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29:131–143PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Melanie Laßek
    • 1
  • Jens Weingarten
    • 1
  • Walter Volknandt
    • 1
    Email author
  1. 1.Molecular and Cellular NeurobiologyGoethe UniversityFrankfurtGermany

Personalised recommendations