Skip to main content

Advertisement

Log in

In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation along multiple cell lineages and have potential applications in a wide range of therapies. These cells are commonly cultured as monolayers on tissue culture plastic but possibly lose their cell-specific properties with time in vitro. There is growing interest in culturing adherent cells via three-dimensional (3D) techniques in order to recapitulate 3D in vivo conditions. We describe a novel method for generating and culturing rabbit MSCs as scaffold-free 3D cell aggregates by using micropatterned wells via a forced aggregation technique. The viability and proliferative capability of MSC aggregates were assessed via Live/Dead staining and 5-ethynyl-2’-deoxyuridine (EdU) incorporation. Enzyme-linked immunosorbent assay and antibody-based multiplex protein assays were used to quantify released growth factors and chemokines. The gene expression profile of MSCs as 3D aggregates relative to MSCs grown as monolayers was evaluated via quantitative real-time polymerase chain reaction. The rabbit MSCs were able to form compact cell aggregates and remained viable in 3D culture for up to 7 days. We also demonstrated enhanced gene and protein expression related to angiogenesis and wound healing in MSCs cultured under 3D conditions. In vitro tube formation and scratch assay revealed superior neovessel formation and greater cell recovery and migration in response to 3D conditioned media after wounding. Our data further suggest that adipose-derived stem cell aggregates have greater potential than dermal fibroblasts or bone-marrow-derived MSCs in accelerating wound healing and reducing scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, Rodeheaver GT, Peirce SM, Katz AJ (2010) Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng A 16:1595–1606. doi:10.1089/ten.TEA.2009.0616

    Article  CAS  Google Scholar 

  • Baharvand H, Hashemi SM, Shahsavani M (2008) Differentiation of human embryonic stem cells into functional hepatocyte-like cells in a serum-free adherent culture condition. Differentiation 76:465–477. doi:10.1111/j.1432-0436.2007.00252.x

    Article  PubMed  CAS  Google Scholar 

  • Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 28:707–715

    Article  PubMed  CAS  Google Scholar 

  • Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347:701–711. doi:10.1007/s00441-011-1215-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 107:13724–13729. doi:10.1073/pnas.1008117107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682. doi:10.1634/stemcells.22-5-675

    Article  PubMed  CAS  Google Scholar 

  • Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351

    PubMed  CAS  Google Scholar 

  • Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634. doi:10.1634/stemcells.22-4-625

    Article  PubMed  Google Scholar 

  • Bittinger F, Brochhausen C, Skarke C, Kohler H, Kirkpatrick CJ (1997) Reconstruction of peritoneal-like structure in three-dimensional collagen gel matrix culture. Exp Cell Res 236:155–160. doi:10.1006/excr.1997.3724

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650. doi:10.1002/jor.1100090504

    Article  PubMed  CAS  Google Scholar 

  • Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134:277–286

    PubMed  CAS  Google Scholar 

  • Colwell AS, Beanes SR, Soo C, Dang C, Ting K, Longaker MT, Atkinson JB, Lorenz HP (2005) Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair. Plast Reconstr Surg 115:204–212

    PubMed  CAS  Google Scholar 

  • Cook MM, Futrega K, Osiecki M, Kabiri M, Kul B, Rice A, Atkinson K, Brooke G, Doran M (2012) Micromarrows-three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng Part C Methods 18:319–328. doi:10.1089/ten.TEC.2011.0159

    Article  PubMed  CAS  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712. doi:10.1126/science.1064829

    Article  PubMed  CAS  Google Scholar 

  • Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli E, Bader A (2007) Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials 28:5487–5497. doi:10.1016/j.biomaterials.2007.08.033

    Article  PubMed  CAS  Google Scholar 

  • Davidson JM (1998) Animal models for wound repair. Arch Dermatol Res 290 (Suppl):S1–S11

    Article  PubMed  Google Scholar 

  • Dykstra M, Reuss LE (2003) Biological electron microscopy: theory, techniques, and troubleshooting. Springer, New York

    Book  Google Scholar 

  • Fukuda J, Okamura K, Nakazawa K, Ijima H, Yamashita Y, Shimada M, Shirabe K, Tsujita E, Sugimachi K, Funatsu K (2003) Efficacy of a polyurethane foam/spheroid artificial liver by using human hepatoblastoma cell line (Hep G2). Cell Transplant 12:51–58

    Article  PubMed  CAS  Google Scholar 

  • Glicklis R, Merchuk JC, Cohen S (2004) Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol Bioeng 86:672–680. doi:10.1002/bit.20086

    Article  PubMed  CAS  Google Scholar 

  • Hong SJ, Jia SX, Xie P, Xu W, Leung KP, Mustoe TA, Galiano RD (2013) Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS ONE 8:e55640. doi:10.1371/journal.pone.0055640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hosokawa R, Nonaka K, Morifuji M, Shum L, Ohishi M (2003) TGF-beta 3 decreases type I collagen and scarring after labioplasty. J Dent Res 82:558–564

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  PubMed  CAS  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272. doi:10.1006/excr.1997.3858

    Article  PubMed  CAS  Google Scholar 

  • Kabiri M, Kul B, Lott WB, Futrega K, Ghanavi P, Upton Z, Doran MR (2012) 3D mesenchymal stem/stromal cell osteogenesis and autocrine signalling. Biochem Biophys Res Commun 419:142–147. doi:10.1016/j.bbrc.2012.01.017

    Article  PubMed  CAS  Google Scholar 

  • Kapur SK, Wang X, Shang H, Yun S, Li X, Feng G, Khurgel M, Katz AJ (2012) Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids. Biofabrication 4:025004. doi:10.1088/1758-5082/4/2/025004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A 101:1554–1559. doi:10.1073/pnas.0307588100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180. doi:10.1002/bit.10655

    Article  PubMed  CAS  Google Scholar 

  • Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, Halvorsen YD, Cheatham B, Storms RW, Gimble JM (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212:702–709. doi:10.1002/jcp.21068

    Article  PubMed  CAS  Google Scholar 

  • Kloeters OTA, Mustoe TA (2007) Hypertrophic scar model in the rabbit ear: a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction. Wound Repair Regen 15 (Suppl 1):S40–S45

    Article  PubMed  Google Scholar 

  • Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389–398. doi:10.1263/jbb.103.389

    Article  PubMed  CAS  Google Scholar 

  • Mansilla E, Marin GH, Sturla F, Drago HE, Gil MA, Salas E, Gardiner MC, Piccinelli G, Bossi S, Salas E, Petrelli L, Iorio G, Ramos CA, Soratti C (2005) Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries. Transplant Proc 37:292–294. doi:10.1016/j.transproceed.2005.01.070

    Article  PubMed  CAS  Google Scholar 

  • Markway BD, Tan GK, Brooke G, Hudson JE, Cooper-White JJ, Doran MR (2010) Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant 19:29–42. doi:10.3727/096368909X478560

    Article  PubMed  Google Scholar 

  • Morris DE, Wu L, Zhao LL, Bolton L, Roth SI, Ladin DA, Mustoe TA (1997) Acute and chronic animal models for excessive dermal scarring: quantitative studies. Plast Reconstr Surg 100:674–681

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5:1571–1584. doi:10.1517/14712598.5.12.1571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sisco M, Kryger ZB, O’Shaughnessy KD, Kim PS, Schultz GS, Ding XZ, Roy NK, Dean NM, Mustoe TA (2008) Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair 16:661–673. doi:10.1111/j.1524-475X.2008.00416.x

    Article  Google Scholar 

  • Takahashi T, Ogasawara T, Asawa Y, Mori Y, Uchinuma E, Takato T, Hoshi K (2007) Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng 13:1583–1592. doi:10.1089/ten.2006.0322

    Article  PubMed  CAS  Google Scholar 

  • Timmins NE, Dietmair S, Nielsen LK (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7:97–103. doi:10.1007/s10456-004-8911-7

    Article  PubMed  Google Scholar 

  • Tong JZ, Sarrazin S, Cassio D, Gauthier F, Alvarez F (1994) Application of spheroid culture to human hepatocytes and maintenance of their differentiation. Biol Cell 81:77–81

    Article  PubMed  CAS  Google Scholar 

  • Ungrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW (2008) Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 3:e1565. doi:10.1371/journal.pone.0001565

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426. doi:10.1002/mus.880181212

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094. doi:10.1016/j.biomaterials.2005.05.022

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Siddiqui A, Morris DE, Cox DA, Roth SI, Mustoe TA (1997) Transforming growth factor beta 3 (TGF beta 3) accelerates wound healing without alteration of scar prominence. Histologic and competitive reverse-transcription-polymerase chain reaction studies. Arch Surg 132:753–760

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659. doi:10.1634/stemcells.2007-0226

    Article  PubMed  CAS  Google Scholar 

  • Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. doi:10.1089/107632701300062859

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. doi:10.1091/mbc.E02-02-0105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488. doi:10.1186/ar130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Wei Xu for the isolation of rabbit dermal fibroblasts. TEM samples were processed and imaged in the Electron Microscopy Core Facility, Department of Pathology, The University of Texas Health Science Center, San Antonio, Tex., USA. The authors are also grateful to Dr. Tao You for assistance with generating the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai P. Leung.

Additional information

This work was presented, in part, at the Symposium on Advanced Wound Care (SAWC) and Wound Healing Society (WHS) Annual Meeting, May 1–5, 2013, Colorado Convention Center, Denver, Colo., USA.

This work was supported by the United States Army Medical Research and Material Command (W81XWH-10-2-0054). The authors are employees of the U.S. Government, and this work was prepared as part of their official duties.

The opinions or assertions contained herein are the private views of the authors and are not to be construed as being official or reflecting the views of the Department of Defense or U.S. Government.

No competing financial interests exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Confocal microscopic images of Live/Dead stain on ASC aggregates of three representative cell densities that have been maintained for 7 days in culture: (a) 250 cells/aggregate, (b) 1000 cells/aggregate, (c) 16000 cells/aggregate. Live or viable cells were stained green (calcein AM), whereas dead or compromised cells were stained red (ethidium homodimer-1). Non-viable cells were evident in ASC aggregates that were larger in size (greater than 4000 cells/aggregate). Magnification of images is 200×. (GIF 49 kb)

High resolution (TIFF 1703 kb)

Supplemental Figure 2

Fluorescent images of ASC aggregates (at 500 cells/aggregate) labeled with EdU and counterstained with Hoechst after 7 days in culture (bottom panel, d-f). Images of ASC monolayers labeled with EdU and counterstained with Hoechst (top panel, a-c). Limited cell proliferation (low abundance of EdU-positive cells) was observed in ASC aggregates throughout the experiment, regardless of the size of the aggregates. Magnification of images is 100× (GIF 92 kb)

High resolution (TIFF 4043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rettinger, C.L., Fourcaudot, A.B., Hong, S.J. et al. In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates. Cell Tissue Res 358, 395–405 (2014). https://doi.org/10.1007/s00441-014-1939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1939-0

Keywords

Navigation