Cell and Tissue Research

, Volume 358, Issue 1, pp 149–164 | Cite as

Characterization and evaluation of mesenchymal stem cells derived from human embryonic stem cells and bone marrow

  • Patrick T. Brown
  • Matthew W. Squire
  • Wan-Ju LiEmail author
Regular Article


Embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have been studied for years as primary cell sources for regenerative biology and medicine. MSCs have been derived from cell and tissue sources, such as bone marrow (BM), and more recently from ESCs. This study investigated MSCs derived from BM, H1- and H9-ESC lines in terms of morphology, surface marker and growth factor receptor expression, proliferative capability, modulation of immune cell growth and multipotency, in order to evaluate ESC-MSCs as a cell source for potential regenerative applications. The results showed that ESC-MSCs exhibited spindle-shaped morphology similar to BM-MSCs but of various sizes, and flow cytometric immunophenotyping revealed expression of characteristic MSC surface markers on all tested cell lines except H9-derived MSCs. Differences in growth factor receptor expression were also shown between cell lines. In addition, ESC-MSCs showed greater capabilities for cell proliferation, and suppression of leukocyte growth compared to BM-MSCs. Using standard protocols, induction of ESC-MSC differentiation along the adipogenic, osteogenic, or chondrogenic lineages was less effective compared to that of BM-MSCs. By adding bone morphogenetic protein 7 (BMP7) into transforming growth factor beta 1 (TGFβ1)-supplemented induction medium, chondrogenesis of ESC-MSCs was significantly enhanced. Our findings suggest that ESC-MSCs and BM-MSCs show differences in their surface marker profiles and the capacities of proliferation, immunomodulation, and most importantly multi-lineage differentiation. Using modified chondrogenic medium with BMP7 and TGFβ1, H1-MSCs can be effectively induced as BM-MSCs for chondrogenesis.


Embryonic stem cell Mesenchymal stem cell Differentiation Transforming growth factor beta Bone morphogenetic protein 



Patrick Brown was supported by NIH/NIGMS R25 GM083252 through the TEAM Science Program and the UW SMPH MSTP T32 GM008692. The authors would like to thank Drs. Igor Slukvin, Xin Zhang, Kran Suknuntha, Peiman Hematti and Jaehyup Kim for providing ESC-MSCs and PBMCs for this study.

Disclosure statement

The authors have no financial conflicts to disclose.

Supplementary material

441_2014_1926_MOESM1_ESM.pdf (79 kb)
ESM 1 (PDF 79 kb)


  1. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8:215–225PubMedCrossRefGoogle Scholar
  2. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973PubMedCrossRefGoogle Scholar
  3. Bocelli-Tyndall C, Bracci L, Schaeren S, Feder-Mengus C, Barbero A, Tyndall A, Spagnoli GC (2009) Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Ann Rheum Dis 68:1352–1359PubMedCrossRefGoogle Scholar
  4. Boyd NL, Robbins KR, Dhara SK, West FD, Stice SL (2009) Human embryonic stem cell derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng A 15:1897–1907CrossRefGoogle Scholar
  5. Brooke G, Cook M, Blair C, Han R, Heazlewood C, Jones B, Kambouris M, Kollar K, McTaggart S, Pelekanos R, Rice A, Rossetti T, Atkinson K (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18:846–858PubMedCrossRefGoogle Scholar
  6. Brown SE, Tong W, Krebsbach PH (2009) The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs 189:256–260PubMedCrossRefGoogle Scholar
  7. Coleman CM, Vaughan EE, Browe DC, Mooney E, Howard L, Barry F (2013) Growth differentiation factor-5 enhances in vitro mesenchymal stromal cell chondrogenesis and hypertrophy. Stem Cells Dev 22:1968–1976PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A 95:10614–10619PubMedCrossRefPubMedCentralGoogle Scholar
  9. de Peppo GM, Svensson S, Lenneras M, Synnergren J, Stenberg J, Strehl R, Hyllner J, Thomsen P, Karlsson C (2010) Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications. Tissue Eng A 16:2161–2182CrossRefGoogle Scholar
  10. de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G, Marolt D (2013) Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 110:8680–8685PubMedCrossRefPubMedCentralGoogle Scholar
  11. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedCrossRefGoogle Scholar
  12. Dickhut A, Pelttari K, Janicki P, Wagner W, Eckstein V, Egermann M, Richter W (2009) Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 219:219–226PubMedCrossRefGoogle Scholar
  13. Ferguson CM, Schwarz EM, Puzas JE, Zuscik MJ, Drissi H, O’Keefe RJ (2004) Transforming growth factor-beta1 induced alteration of skeletal morphogenesis in vivo. J Orthop Res 22:687–696PubMedCrossRefGoogle Scholar
  14. Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211:27–35PubMedCrossRefGoogle Scholar
  15. Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22:487–500PubMedCrossRefGoogle Scholar
  16. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, Dulce R, Pattany PM, Valdes D, Revilla C, Heldman AW, McNiece I, Hare JM (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107:913–922PubMedCrossRefPubMedCentralGoogle Scholar
  17. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hwang NS, Varghese S, Elisseeff J (2008a) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3:e2498PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J, Cheng L, Elisseeff J (2008b) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci U S A 105:20641–20646PubMedCrossRefPubMedCentralGoogle Scholar
  20. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  21. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126PubMedCrossRefGoogle Scholar
  22. Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337PubMedGoogle Scholar
  23. Karlsson C, Emanuelsson K, Wessberg F, Kajic K, Axell MZ, Eriksson PS, Lindahl A, Hyllner J, Strehl R (2009) Human embryonic stem cell-derived mesenchymal progenitors- Potential in regenerative medicine. Stem Cell Res 3:39–50PubMedCrossRefGoogle Scholar
  24. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549PubMedCrossRefGoogle Scholar
  25. Kopher RA, Penchev VR, Islam MS, Hill KL, Khosla S, Kaufman DS (2010) Human embryonic stem cell-derived CD34+ cells function as MSC progenitor cells. Bone 47:718–728PubMedCrossRefPubMedCentralGoogle Scholar
  26. Li O, Tormin A, Sundberg B, Hyllner J, Le Blanc K, Scheding S (2013) Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) engraft in vivo and support hematopoiesis without suppressing immune function: implications for off-the shelf ESMSC therapies. PLoS One 8:e55319PubMedCrossRefPubMedCentralGoogle Scholar
  27. Liu F, Akiyama Y, Tai S, Maruyama K, Kawaguchi Y, Muramatsu K, Yamaguchi K (2008) Changes in the expression of CD106, osteogenic genes, and transcription factors involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells. Journal Bone Miner Metab 26:312–320Google Scholar
  28. Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G, Spitalnik PF, Grayson WL, Vunjak-Novakovic G (2012) Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci U S A 109:8705–8709PubMedCrossRefPubMedCentralGoogle Scholar
  29. Montero JA, Lorda-Diez CI, Ganan Y, Macias D, Hurle JM (2008) Activin/TGFbeta and BMP crosstalk determines digit chondrogenesis. Dev Biol 321:343–356PubMedCrossRefGoogle Scholar
  30. Mrugala D, Dossat N, Ringe J, Delorme B, Coffy A, Bony C, Charbord P, Haupl T, Daures JP, Noel D, Jorgensen C (2009) Gene expression profile of multipotent mesenchymal stromal cells: Identification of pathways common to TGFbeta3/BMP2-induced chondrogenesis. Cloning Stem Cells 11:61–76PubMedCrossRefGoogle Scholar
  31. Mueller MB, Tuan RS (2008) Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum 58:1377–1388PubMedCrossRefPubMedCentralGoogle Scholar
  32. Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60:3686–3692PubMedCrossRefGoogle Scholar
  33. Nakayama N, Duryea D, Manoukian R, Chow G, Han CY (2003) Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. J Cell Sci 116:2015–2028PubMedCrossRefGoogle Scholar
  34. Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28:1187–1194PubMedCrossRefGoogle Scholar
  35. Oshimori N, Fuchs E (2012) The Harmonies Played by TGF-beta in Stem Cell Biology. Cell Stem Cell 11:751–764PubMedCrossRefPubMedCentralGoogle Scholar
  36. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54:3254–3266PubMedCrossRefGoogle Scholar
  37. Rivera FJ, Aigner L (2012) Adult mesenchymal stem cell therapy for myelin repair in Multiple Sclerosis. Biol Res 45:257–268PubMedCrossRefGoogle Scholar
  38. Rui YF, Du L, Wang Y, Lui PP, Tang TT, Chan KM, Dai KR (2010) Bone morphogenetic protein 2 promotes transforming growth factor beta3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells. Chin Med J (Engl) 123:3040–3048Google Scholar
  39. Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982PubMedCrossRefGoogle Scholar
  40. Schmitt B, Ringe J, Haupl T, Notter M, Manz R, Burmester GR, Sittinger M, Kaps C (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 71:567–577PubMedCrossRefGoogle Scholar
  41. Seebach C, Henrich D, Wilhelm K, Barker JH, Marzi I (2012) Endothelial Progenitor Cells Improve Directly and Indirectly Early Vascularization of Mesenchymal Stem Cell-Driven Bone Regeneration in a Critical Bone Defect in Rats. Cell Transplant 21(8):1667–1677PubMedCrossRefGoogle Scholar
  42. Shen B, Wei A, Whittaker S, Williams LA, Tao H, Ma DD, Diwan AD (2010) The role of BMP- 7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. J Cell Biochem 109:406–416PubMedGoogle Scholar
  43. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85PubMedCrossRefGoogle Scholar
  44. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490PubMedCrossRefGoogle Scholar
  45. Tolar J, Le Blanc K, Keating A, Blazar BR (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28:1446–1455PubMedCrossRefPubMedCentralGoogle Scholar
  46. Toubai T, Paczesny S, Shono Y, Tanaka J, Lowler KP, Malter CT, Kasai M, Imamura M (2009) Mesenchymal stem cells for treatment and prevention of graft-versus-host disease after allogeneic hematopoietic cell transplantation. Curr Stem Cell Res Ther 4:252–259PubMedCrossRefGoogle Scholar
  47. Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36:350–359PubMedPubMedCentralGoogle Scholar
  48. Varga N, Vereb Z, Rajnavolgyi E, Nemet K, Uher F, Sarkadi B, Apati A (2011) Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth. Biochem Biophys Res Commun 414:474–480PubMedCrossRefGoogle Scholar
  49. Varghese S, Hwang NS, Ferran A, Hillel A, Theprungsirikul P, Canver CA, Zhang Z, Gearhart J, Elisseeff JH (2010) Engineering musculoskeletal tissue with human embryonic germ cell derivatives Stem Cells 28:765–774Google Scholar
  50. Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II (2010) A mesodermderived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7:718–729PubMedCrossRefPubMedCentralGoogle Scholar
  51. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3:e2213PubMedCrossRefPubMedCentralGoogle Scholar
  52. Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V, Boukamp P, Ho AD (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846PubMedCrossRefPubMedCentralGoogle Scholar
  53. Wan M, Cao X (2005) BMP signaling in skeletal development. Biochem Biophys Res Commun 328:651–657PubMedCrossRefGoogle Scholar
  54. Wang G, Bunnell BA, Painter RG, Quiniones BC, Tom S, Lanson NA Jr, Spees JL, Bertucci D, Peister A, Weiss DJ, Valentine VG, Prockop DJ, Kolls JK (2005) Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci U S A 102:186–191PubMedCrossRefPubMedCentralGoogle Scholar
  55. Xu D, Gechtman Z, Hughes A, Collins A, Dodds R, Cui X, Jolliffe L, Higgins L, Murphy A, Farrell F (2006) Potential involvement of BMP receptor type IB activation in a synergistic effect of chondrogenic promotion between rhTGFbeta3 and rhGDF5 or rhBMP7 in human mesenchymal stem cells. Growth Factors 24:268–278PubMedCrossRefGoogle Scholar
  56. Yen BL, Chang CJ, Liu KJ, Chen YC, Hu HI, Bai CH, Yen ML (2009) Brief report–human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells 27:451–456PubMedCrossRefGoogle Scholar
  57. Yen ML, Hou CH, Peng KY, Tseng PC, Jiang SS, Shun CT, Chen YC, Kuo ML (2011) Efficient derivation and concise gene expression profiling of human embryonic stem cell-derived mesenchymal progenitors (EMPs). Cell Transplant 20:1529–1545PubMedCrossRefGoogle Scholar
  58. Yoon BS, Lyons KM (2004) Multiple functions of BMPs in chondrogenesis. J Cell Biochem 93:93–103PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patrick T. Brown
    • 1
    • 2
  • Matthew W. Squire
    • 1
  • Wan-Ju Li
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Orthopedics and RehabilitationUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Graduate Program in Cellular and Molecular BiologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Biomedical EngineeringUniversity of Wisconsin-Madison1550 Engineering DriveUSA
  4. 4.Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and RehabilitationUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations