Cell and Tissue Research

, Volume 357, Issue 3, pp 743–755 | Cite as

Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex

  • Martin F. Rath
  • Louise Rovsing
  • Morten Møller
Regular Article


The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master–slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.


Clock genes Circadian rhythm Suprachiasmatic nucleus Cerebral cortex Cerebellum 



Actin beta


Analysis of variance


Aryl hydrocarbon receptor nuclear translocator-like, also known as Bmal1


Circadian locomotor output cycles kaput


Cryptochrome 1


Circadian time (animals kept in constant darkness for two days and sacrificed in darkness)


D site of albumin promoter binding protein


Glyceraldehyde-3-phosphate dehydrogenase


Glial fibrillary acidic protein


Neuronal nuclear antigen


Nuclear receptor subfamily 1 group D member 1, also known as Rev-ErbAlpha


Period circadian clock 1


Period circadian clock 2


Quantitative real-time RT-PCR


Zeitgeber time (animals sacrificed during the light–dark cycle)



This study was supported by the Lundbeck Foundation (R34-A3364 and R108-A10301 to M.F.R.; R67-A6494 to M.M.), the Danish Medical Research Council (271-09-0206 to M.F.R.) and the Simon Fougner Hartmann’s Family Foundation (to M.M.). We wish to thank Tine Thorup Mellergaard for expert technical assistance.

Supplementary material

441_2014_1878_MOESM1_ESM.pdf (870 kb)
ESM 1 (PDF 870 kb)


  1. Abe H, Honma S, Namihira M, Tanahashi Y, Ikeda M, Honma K (1998) Circadian rhythm and light responsiveness of bmal1 expression, a partner of mammalian clock gene clock, in the suprachiasmatic nucleus of rats. Neurosci Lett 258:93–96PubMedCrossRefGoogle Scholar
  2. Abe H, Honma S, Namihira M, Masubuchi S, Honma K (2001) Behavioural rhythm splitting in the cs mouse is related to clock gene expression outside the suprachiasmatic nucleus. Eur J Neurosci 14:1121–1128PubMedCrossRefGoogle Scholar
  3. Abe H, Honma S, Ohtsu H, Honma K (2004) Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res Mol Brain Res 124:178–187PubMedCrossRefGoogle Scholar
  4. Akiyama M, Kirihara T, Takahashi S, Minami Y, Yoshinobu Y, Moriya T, Shibata S (1999) Modulation of mper1 gene expression by anxiolytic drugs in mouse cerebellum. Br J Pharmacol 128:1616–1622PubMedCentralPubMedCrossRefGoogle Scholar
  5. Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064PubMedCrossRefGoogle Scholar
  6. Aller MI, Jones A, Merlo D, Paterlini M, Meyer AH, Amtmann U, Brickley S, Jolin HE, McKenzie AN, Monyer H, Farrant M, Wisden W (2003) Cerebellar granule cell cre recombinase expression. Genesis 36:97–103PubMedCrossRefGoogle Scholar
  7. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the mouse circadian clock gene by transgenic bac rescue. Cell 89:655–667PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB, Weller JL, Rath MF, Møller M, Baler R, Sugden D, Rangel ZG, Munson PJ, Klein DC (2009) Night/day changes in pineal expression of >600 genes: Central role of adrenergic/camp signaling. J Biol Chem 284:7606–7622PubMedCentralPubMedCrossRefGoogle Scholar
  9. Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar purkinje cells. Genesis 28:93–98PubMedCrossRefGoogle Scholar
  10. Borjigin J, Zhang LS, Calinescu AA (2012) Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol 349:13–19PubMedCentralPubMedCrossRefGoogle Scholar
  11. Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385PubMedCentralPubMedCrossRefGoogle Scholar
  12. Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2:521–526PubMedCrossRefGoogle Scholar
  13. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017PubMedCentralPubMedCrossRefGoogle Scholar
  14. Coogan AN, Papachatzaki MM, Clemens C, Baird A, Donev RM, Joosten J, Zachariou V, Thome J (2011) Haloperidol alters circadian clock gene product expression in the mouse brain. World J Biol Psychiatry 12:638–644PubMedCrossRefGoogle Scholar
  15. Ebihara S, Marks T, Hudson DJ, Menaker M (1986) Genetic control of melatonin synthesis in the pineal gland of the mouse. Science 231:491–493PubMedCrossRefGoogle Scholar
  16. Foulkes NS, Borjigin J, Snyder SH, Sassone-Corsi P (1996) Transcriptional control of circadian hormone synthesis via the crem feedback loop. Proc Natl Acad Sci USA 93:14140–14145PubMedCentralPubMedCrossRefGoogle Scholar
  17. Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29:1820–1829PubMedCrossRefGoogle Scholar
  18. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR (2002) Cortical excitatory neurons and glia, but not gabaergic neurons, are produced in the emx1-expressing lineage. J Neurosci 22:6309–6314PubMedGoogle Scholar
  19. Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742PubMedCentralPubMedCrossRefGoogle Scholar
  20. Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: Are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25:3195–3216PubMedCrossRefGoogle Scholar
  21. Guo H, Hong S, Jin XL, Chen RS, Avasthi PP, Tu YT, Ivanco TL, Li Y (2000) Specificity and efficiency of cre-mediated recombination in emx1-cre knock-in mice. Biochem Biophys Res Commun 273:661–665PubMedCrossRefGoogle Scholar
  22. Hastings MH, Maywood ES, O’Neill JS (2008) Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 18:R805–R815PubMedCrossRefGoogle Scholar
  23. Kalsbeek A, Fliers E (2013) Daily regulation of hormone profiles. Handb Exp Pharmacol 185–226Google Scholar
  24. Kalsbeek A, Buijs RM, van Heerikhuize JJ, Arts M, van der Woude TP (1992) Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res 580:62–67PubMedCrossRefGoogle Scholar
  25. Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM (2000) Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141:3832–3841PubMedCrossRefGoogle Scholar
  26. Klitten LL, Rath MF, Coon SL, Kim JS, Klein DC, Møller M (2008) Localization and regulation of dopamine receptor d4 expression in the adult and developing rat retina. Exp Eye Res 87:471–477PubMedCentralPubMedCrossRefGoogle Scholar
  27. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, Schatzberg AF, Jones EG, Myers RM, Watson SJ Jr, Akil H, Bunney WE (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA 110:9950–9955PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lim AS, Myers AJ, Yu L, Buchman AS, Duffy JF, De Jager PL, Bennett DA (2013) Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J Biol Rhythms 28:117–129PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The dbp gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16:6762–6771PubMedCentralPubMedCrossRefGoogle Scholar
  30. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components clock and bmal1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631PubMedCentralPubMedCrossRefGoogle Scholar
  31. Mendoza J, Pevet P, Felder-Schmittbuhl MP, Bailly Y, Challet E (2010) The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci 30:1894–1904PubMedCrossRefGoogle Scholar
  32. Miyamoto Y, Sancar A (1998) Vitamin b2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102PubMedCentralPubMedCrossRefGoogle Scholar
  33. Onishi H, Yamaguchi S, Yagita K, Ishida Y, Dong X, Kimura H, Jing Z, Ohara H, Okamura H (2002) Rev-erbalpha gene expression in the mouse brain with special emphasis on its circadian profiles in the suprachiasmatic nucleus. J Neurosci Res 68:551–557PubMedCrossRefGoogle Scholar
  34. Pezuk P, Mohawk JA, Wang LA, Menaker M (2012) Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology 153:4775–4783PubMedCentralPubMedCrossRefGoogle Scholar
  35. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor rev-erbalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260PubMedCrossRefGoogle Scholar
  36. Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25:404–408PubMedCrossRefGoogle Scholar
  37. Rath MF, Munoz E, Ganguly S, Morin F, Shi Q, Klein DC, Møller M (2006) Expression of the otx2 homeobox gene in the developing mammalian brain: Embryonic and adult expression in the pineal gland. J Neurochem 97:556–566PubMedCrossRefGoogle Scholar
  38. Rath MF, Morin F, Shi Q, Klein DC, Møller M (2007) Ontogenetic expression of the otx2 and crx homeobox genes in the retina of the rat. Exp Eye Res 85:65–73PubMedCrossRefGoogle Scholar
  39. Rath MF, Bailey MJ, Kim JS, Ho AK, Gaildrat P, Coon SL, Møller M, Klein DC (2009) Developmental and diurnal dynamics of pax4 expression in the mammalian pineal gland: Nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3′,5′-monophosphate signaling. Endocrinology 150:803–811PubMedCentralPubMedCrossRefGoogle Scholar
  40. Rath MF, Rohde K, Møller M (2012) Circadian oscillations of molecular clock components in the cerebellar cortex of the rat. Chronobiol Int 29:1289–1299PubMedCrossRefGoogle Scholar
  41. Rath MF, Rohde K, Fahrenkrug J, Møller M (2013) Circadian clock components in the rat neocortex: Daily dynamics, localization and regulation. Brain Struct Funct 218:551–562PubMedCrossRefGoogle Scholar
  42. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941PubMedCrossRefGoogle Scholar
  43. Roseboom PH, Namboodiri MA, Zimonjic DB, Popescu NC, Rodriguez IR, Gastel JA, Klein DC (1998) Natural melatonin ‘knockdown’ in c57bl/6j mice: Rare mechanism truncates serotonin n-acetyltransferase. Brain Res Mol Brain Res 63:189–197PubMedCrossRefGoogle Scholar
  44. Rovsing L, Clokie S, Bustos DM, Rohde K, Coon SL, Litman T, Rath MF, Møller M, Klein DC (2011) Crx broadly modulates the pineal transcriptome. J Neurochem 119:262–274PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124PubMedCentralPubMedCrossRefGoogle Scholar
  46. Schwartz MD, Nunez AA, Smale L (2004) Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127:13–23PubMedCrossRefGoogle Scholar
  47. Segall LA, Amir S (2010) Glucocorticoid regulation of clock gene expression in the mammalian limbic forebrain. J Mol Neurosci 42:168–175PubMedCrossRefGoogle Scholar
  48. Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269PubMedCrossRefGoogle Scholar
  49. Shearman LP, Zylka MJ, Reppert SM, Weaver DR (1999) Expression of basic helix-loop-helix/pas genes in the mouse suprachiasmatic nucleus. Neuroscience 89:387–397PubMedCrossRefGoogle Scholar
  50. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019PubMedCrossRefGoogle Scholar
  51. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) Rigui, a putative mammalian ortholog of the drosophila period gene. Cell 90:1003–1011PubMedCrossRefGoogle Scholar
  53. Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282:1490–1494PubMedCrossRefGoogle Scholar
  54. Tousson E, Meissl H (2004) Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci 24:2983–2988PubMedCrossRefGoogle Scholar
  55. von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevet P, Korf HW, Stehle JH (2000) Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: A comparative analysis of melatonin-deficient c57bl mice and melatonin-proficient c3h mice. Eur J Neurosci 12:964–972CrossRefGoogle Scholar
  56. Vrang N, Larsen PJ, Møller M, Mikkelsen JD (1995) Topographical organization of the rat suprachiasmatic-paraventricular projection. J Comp Neurol 353:585–603PubMedCrossRefGoogle Scholar
  57. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mper1 and mper2 mrna in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 13:1190–1196PubMedCrossRefGoogle Scholar
  58. Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, Bradfield CA, FitzGerald GA (2008) Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117:2087–2095PubMedCrossRefGoogle Scholar
  59. Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S, Sancar A, Franken P, Lein ES, Kilduff TS (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28:7193–7201PubMedCentralPubMedCrossRefGoogle Scholar
  60. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18PubMedCentralPubMedCrossRefGoogle Scholar
  61. Yang S, Wang K, Valladares O, Hannenhalli S, Bucan M (2007) Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex. Genome Biol 8:R247PubMedCentralPubMedCrossRefGoogle Scholar
  62. Zhang EE, Kay SA (2010) Clocks not winding down: Unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776PubMedCrossRefGoogle Scholar
  63. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A (1999) The mper2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169–173PubMedCrossRefGoogle Scholar
  64. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mper1 and mper2 genes in the mammalian circadian clock. Cell 105:683–694PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin F. Rath
    • 1
  • Louise Rovsing
    • 1
  • Morten Møller
    • 1
  1. 1.Department of Neuroscience and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations