Advertisement

Cell and Tissue Research

, Volume 357, Issue 3, pp 633–643 | Cite as

Expression and effects of epidermal growth factor on human periodontal ligament cells

  • Yoko Teramatsu
  • Hidefumi MaedaEmail author
  • Hideki Sugii
  • Atsushi Tomokiyo
  • Sayuri Hamano
  • Naohisa Wada
  • Asuka Yuda
  • Naohide Yamamoto
  • Katsuaki Koori
  • Akifumi Akamine
Regular Article

Abstract

Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.

Keywords

Angiogenesis Chemotaxis Epidermal growth factor Periodontal ligament cells Wound healing 

Notes

Acknowledgments

This study was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (grant number: 23689077, 24390426, 24659848, 24792028, 25293388, and 25670811). We thank Drs. Monnouchi, Hasegawa, Yuda and Yoshida for their great support in the preparation of this work.

References

  1. Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40PubMedCrossRefGoogle Scholar
  2. Berkovitz BKB, Shore RC (1995) Cells of periodontal ligament, 2nd edn. Mosby-Wolfe, LondonGoogle Scholar
  3. Chandra A, Lan S, Zhu J, Siclari V, Qin L (2013) Epidermal Growth Factor Receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing Early Growth Response Protein (Egr2) expression. J Biol Chem 88:20488–20498CrossRefGoogle Scholar
  4. Cho MI, Garant PR (1996) Expression and role of epidermal growth factor receptors during differentiation of cementoblasts, osteoblasts, and periodontal ligament fibroblasts in the rat. Anat Rec 245:342–360PubMedCrossRefGoogle Scholar
  5. Cohen S, Elliott GA (1963) The stimulation of epidermal keratinization by a protein isolated from the submaxillary gland of the mouse. J Investig Dermatol 40:1–5PubMedGoogle Scholar
  6. Eliasson P, Andersson T, Hammerman M, Aspenberg P (2013) Primary gene response to mechanical loading in healing rat Achilles tendons. J Appl Physiol 114:1519–1526PubMedCrossRefGoogle Scholar
  7. Fang F, Ooka K, Bhattacharyya S, Wei J, Wu M, Du P, Lin S, Del Galdo F, Feghali-Bostwick CA, Varga J (2011) The early growth response gene Egr2 (Alias Krox20) is a novel transcriptional target of transforming growth factor-beta that is up-regulated in systemic sclerosis and mediates profibrotic responses. Am J Pathol 178:2077–2090PubMedCentralPubMedCrossRefGoogle Scholar
  8. Fujii S, Maeda H, Wada N, Kano Y, Akamine A (2006) Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 324:117–125PubMedCrossRefGoogle Scholar
  9. Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A (2008) Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 215:743–749PubMedCrossRefGoogle Scholar
  10. Fujii S, Maeda H, Tomokiyo A, Monnouchi S, Hori K, Wada N, Akamine A (2010) Effects of TGF-beta1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell Tissue Res 342:233–242PubMedCrossRefGoogle Scholar
  11. Fujita T, Shiba H, Van Dyke TE, Kurihara H (2004) Differential effects of growth factors and cytokines on the synthesis of SPARC, DNA, fibronectin and alkaline phosphatase activity in human periodontal ligament cells. Cell Biol Int 28:281–286PubMedCrossRefGoogle Scholar
  12. Gospodarowicz D, Bialecki H, Thakral TK (1979) The angiogenic activity of the fibroblast and epidermal growth factor. Exp Eye Res 28:501–514PubMedCrossRefGoogle Scholar
  13. Grose R, Harris BS, Cooper L, Topilko P, Martin P (2002) Immediate early genes krox-24 and krox-20 are rapidly up-regulated after wounding in the embryonic and adult mouse. Dev Dyn 223:371–378PubMedCrossRefGoogle Scholar
  14. Ito J, Harada N, Nagashima O, Makino F, Usui Y, Yagita H, Okumura K, Dorscheid DR, Atsuta R, Akiba H, Takahashi K (2011) Wound-induced TGF-beta1 and TGF-beta2 enhance airway epithelial repair via HB-EGF and TGF-alpha. Biochem Biophys Res Commun 412:109–114PubMedCrossRefGoogle Scholar
  15. Iwabu A, Smith K, Allen FD, Lauffenburger DA, Wells A (2004) Epidermal growth factor induces fibroblast contractility and motility via a protein kinase C delta-dependent pathway. J Biol Chem 279:14551–14560PubMedCrossRefGoogle Scholar
  16. Kerpedjieva SS, Kim DS, Barbeau DJ, Tamama K (2012) EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1. Stem Cells Dev 21:2541–2551PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kim YS, Lew DH, Tark KC, Rah DK, Hong JP (2010) Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing. J Korean Med Sci 25:589–596PubMedCentralPubMedCrossRefGoogle Scholar
  18. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801PubMedCrossRefGoogle Scholar
  19. Komiyama Y, Ohba S, Shimohata N, Nakajima K, Hojo H, Yano F, Takato T, Docheva D, Shukunami C, Hiraki Y, Chung UI (2013) Tenomodulin expression in the periodontal ligament enhances cellular adhesion. PLoS ONE 8:e60203PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kono K, Maeda H, Fujii S, Tomokiyo A, Yamamoto N, Wada N, Monnouchi S, Teramatsu Y, Hamano S, Koori K, Akamine A (2013) Exposure to transforming growth factor-beta1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res 352:249–263PubMedCrossRefGoogle Scholar
  21. Laflamme C, Curt S, Rouabhia M (2010) Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch Oral Biol 55:689–701PubMedCrossRefGoogle Scholar
  22. Ma J, Ren Z, Ma Y, Xu L, Zhao Y, Zheng C, Fang Y, Xue T, Sun B, Xiao W (2009) Targeted knockdown of EGR-1 inhibits IL-8 production and IL-8-mediated invasion of prostate cancer cells through suppressing EGR-1/NF-kappaB synergy. J Biol Chem 284:34600–34606PubMedCentralPubMedCrossRefGoogle Scholar
  23. Maeda H, Wada N, Fujii S, Tomokiyo A, Akamine A (2011) Periodontal ligament stem cells. InTech, RijekaGoogle Scholar
  24. Maeda H, Fujii S, Tomokiyo A, Wada N, Akamine A (2013a) Periodontal tissue engineering: defining the triad. Int J Oral Maxillofac Implants 28:e461–e471PubMedCrossRefGoogle Scholar
  25. Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A (2013b) Prospective potency of TGF-beta1 on maintenance and regeneration of periodontal tissue. Int Rev Cell Mol Biol 304:283–367PubMedCrossRefGoogle Scholar
  26. Marquez L, de Abreu FA, Ferreira CL, Alves GD, Miziara MN, Alves JB (2013) Enhanced bone healing of rat tooth sockets after administration of epidermal growth factor (EGF) carried by liposome. Injury 44:558–564PubMedCrossRefGoogle Scholar
  27. Monnouchi S, Maeda H, Fujii S, Tomokiyo A, Kono K, Akamine A (2011) The roles of angiotensin II in stretched periodontal ligament cells. J Dent Res 90:181–185PubMedCrossRefGoogle Scholar
  28. Pyrc K, Milewska A, Kantyka T, Sroka A, Maresz K, Koziel J, Nguyen KA, Enghild JJ, Knudsen AD, Potempa J (2013) Inactivation of epidermal growth factor by Porphyromonas gingivalis as a potential mechanism for periodontal tissue damage. Infect Immun 81:55–64PubMedCentralPubMedCrossRefGoogle Scholar
  29. Schultz G, Rotatori DS, Clark W (1991) EGF and TGF-alpha in wound healing and repair. J Cell Biochem 45:346–352PubMedCrossRefGoogle Scholar
  30. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRefGoogle Scholar
  31. Shen XH, Xu SJ, Jin CY, Ding F, Zhou YC, Fu GS (2013) Interleukin-8 prevents oxidative stress-induced human endothelial cell senescence via telomerase activation. Int Immunopharmacol 16:261–267PubMedCrossRefGoogle Scholar
  32. Shimoyamada H, Yazawa T, Sato H, Okudela K, Ishii J, Sakaeda M, Kashiwagi K, Suzuki T, Mitsui H, Woo T, Tajiri M, Ohmori T, Ogura T, Masuda M, Oshiro H, Kitamura H (2010) Early growth response-1 induces and enhances vascular endothelial growth factor-A expression in lung cancer cells. Am J Pathol 177:70–83PubMedCentralPubMedCrossRefGoogle Scholar
  33. Swirnoff AH, Milbrandt J (1995) DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol 15:2275–2287PubMedCentralPubMedGoogle Scholar
  34. Tamama K, Barbeau DJ (2012) Early growth response genes signaling supports strong paracrine capability of mesenchymal stem cells. Stem Cells Int 2012:428403PubMedCentralPubMedCrossRefGoogle Scholar
  35. Tamama K, Kawasaki H, Wells A (2010) Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol 2010:795385PubMedCentralPubMedCrossRefGoogle Scholar
  36. Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, Akamine A (2008) Development of a multipotent clonal human periodontal ligament cell line. Differentiation 76:337–347PubMedCrossRefGoogle Scholar
  37. Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Hori K, Koori K, Yamamoto N, Teramatsu Y, Akamine A (2012a) Alternation of extracellular matrix remodeling and apoptosis by activation of the aryl hydrocarbon receptor pathway in human periodontal ligament cells. J Cell Biochem 113:3093–3103PubMedCrossRefGoogle Scholar
  38. Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Kono K, Yamamoto N, Koori K, Teramatsu Y, Akamine A (2012b) A multipotent clonal human periodontal ligament cell line with neural crest cell phenotypes promotes neurocytic differentiation, migration, and survival. J Cell Physiol 227:2040–2050PubMedCrossRefGoogle Scholar
  39. Vranckx JJ, Hoeller D, Velander PE, Theopold CF, Petrie N, Takedo A, Eriksson E, Yao F (2007) Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate the healing of full-thickness skin wounds by overexpression of human epidermal growth factor. Wound Repair Regen 15:657–664PubMedCrossRefGoogle Scholar
  40. Yamamoto N, Maeda H, Tomokiyo A, Fujii S, Wada N, Monnouchi S, Kono K, Koori K, Teramatsu Y, Akamine A (2012) Expression and effects of glial cell line-derived neurotrophic factor on periodontal ligament cells. J Clin Periodontol 39:556–564PubMedCrossRefGoogle Scholar
  41. Yamawaki K, Matsuzaka K, Kokubu E, Inoue T (2010) Effects of epidermal growth factor and/or nerve growth factor on Malassez’s epithelial rest cells in vitro: expression of mRNA for osteopontin, bone morphogenetic protein 2 and vascular endothelial growth factor. J Periodontal Res 45:421–427PubMedCrossRefGoogle Scholar
  42. Yucel-Lindberg T, Brunius G (2006) Epidermal growth factor synergistically enhances interleukin-8 production in human gingival fibroblasts stimulated with interleukin-1beta. Arch Oral Biol 51:892–898PubMedCrossRefGoogle Scholar
  43. Zhang Y, Wang L, Zhang M, Jin M, Bai C, Wang X (2012) Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway. J Cell Physiol 227:35–43PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yoko Teramatsu
    • 1
  • Hidefumi Maeda
    • 2
    Email author
  • Hideki Sugii
    • 1
  • Atsushi Tomokiyo
    • 1
  • Sayuri Hamano
    • 1
  • Naohisa Wada
    • 2
  • Asuka Yuda
    • 1
  • Naohide Yamamoto
    • 1
  • Katsuaki Koori
    • 1
  • Akifumi Akamine
    • 1
    • 2
  1. 1.Department of Endodontology and Operative Dentistry, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
  2. 2.Department of EndodontologyKyushu University HospitalFukuokaJapan

Personalised recommendations