Advertisement

Cell and Tissue Research

, Volume 357, Issue 1, pp 323–335 | Cite as

PRRX1 and PRRX2 distinctively participate in pituitary organogenesis and a cell-supply system

  • Masashi Higuchi
  • Saishu Yoshida
  • Hiroki Ueharu
  • Mo Chen
  • Takako Kato
  • Yukio KatoEmail author
Regular Article

Abstract

Paired-related homeobox transcription factors, PRRX1 and PRRX2, are known to be important factors for craniofacial and limb morphogenesis. We recently cloned Prrx2 from the porcine adult pituitary cDNA library and found that only PRRX1 is present in the rat embryonic pituitary. In this study, we re-investigated the temporospatial expression and localization of PRRX1 and PRRX2 in the rat pituitary throughout life. The persistent expression of Prrx1 was ascertained after the middle stage of embryonic development, whereas significant expression of Prrx2 was found only in the postnatal pituitary. Immunohistochemistry confirmed that PRRX1-positive cells appeared inside the pituitary on embryonic day 16.5 in the marginal cell layer (MCL), a pituitary stem/progenitor cell niche, and the expanding parenchyma of the anterior pituitary. In contrast, PRRX2-positive cells first appeared in the anterior lobe and intermediate lobe sides of the MCL around postnatal day 30 when the postnatal pituitary growth wave had almost terminated. Immunostaining for PRRX1 with a stem/progenitor cell marker SOX2, a pituitary progenitor marker PROP1, or pituitary hormones revealed that PRRX1 localized in cells in the transition process from the multipotent progenitor stage to the early stage of terminal differentiation throughout life. PRRX2 emerged in cells positive for SOX2 but negative for PROP1 in the anterior and intermediate lobe sides of the postnatal MCL. Thus, PRRX1 and PRRX2 might participate distinctly in pituitary organogenesis and the postnatal cell-supply system.

Keywords

PRRX1 PRRX2 Stem/progenitor cell Marginal cell layer Rat pituitary 

Abbreviations

PRRX1

Paired-related homeobox 1

PRRX2

Paired-related homeobox 2

PIT1

Pituitary-specific positive transcription factor 1

PROP1

Prophet of PIT1

SOX2

Sex-determining region Y-box 2

Tbp

TATA-box-binding protein

DAPI

4,6-Diamidino-2-phenylindole

PCR

Polymerase chain reaction

FITC

Fluorescein isothiocyanate

GH

Growth hormone

PRL

Prolactin

TSH

Thyroid-stimulating hormone

LH

Luteinizing hormone

FSH

Follicle-stimulating hormone

ACTH

Adrenocorticotropic hormone

MCL

Marginal cell layer

EMT

Epithelial-mesenchymal transition

References

  1. Allaerts W, Vankelecom H (2005) History and perspectives of pituitary folliculo-stellate cell research. Eur J Endocrinol 153:1–12PubMedCrossRefGoogle Scholar
  2. Balic A, Adams D, Mina M (2009) Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process. Dev Dyn 238:2599–2613PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brinkmeier ML, Davis SW, Carninci P, MacDonald JW, Kawai J, Ghosh D, Hayashizaki Y, Lyons RH, Camper SA (2009) Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics 93:449–460PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chen J, Hersmus N, Van Duppen V, Caesens P, Denef C, Vankelecom H (2005) The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 146:3985–3998PubMedCrossRefGoogle Scholar
  5. Chen M, Kato T, Higuchi M, Yoshida S, Yako H, Kanno N, Kato Y (2013) Coxsackievirus and adenovirus receptor-positive cells compose the putative stem/progenitor cell niches in the marginal cell layer and parenchyma of the rat anterior pituitary. Cell Tissue Res 354:823–836PubMedCrossRefGoogle Scholar
  6. Chesterman ES, Kern MJ (2002) Comparative analysis of Prx1 and Prx2 expression in mice provides evidence for incomplete compensation. Anat Rec 266:1–4PubMedCrossRefGoogle Scholar
  7. Cserjesi P, Lilly B, Bryson L, Wang Y, Sassoon DA, Olson EN (1992) MHox: a mesodermally restricted homeodomain protein that binds an essential site in the muscle creatine kinase enhancer. Development 115:1087–1101PubMedGoogle Scholar
  8. Daikoku S, Kawano H, Abe K, Yoshinaga K (1981) Topographical appearance of adenohypophysial cells with special reference to the development of the portal system. Arch Histol Jpn 44:103–116PubMedCrossRefGoogle Scholar
  9. de Jong R, Meijlink F (1993) The homeobox gene S8: mesoderm-specific expression in presomite embryos and in cells cultured in vitro and modulation in differentiating pluripotent cells. Dev Biol 157:133–146PubMedCrossRefGoogle Scholar
  10. Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008)SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland.Proc Natl Acad Sci U S A 105:2907–2912PubMedCentralPubMedCrossRefGoogle Scholar
  11. Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV (2009) A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 4:e4815PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gleiberman AS, Michurina T, Encinas JM, Roig JL, Krasnov P, Balordi F, Fishell G, Rosenfeld MG, Enikolopov G (2008) Genetic approaches identify adult pituitary stem cells. Proc Natl Acad Sci U S A 105:6332–6337PubMedCentralPubMedCrossRefGoogle Scholar
  13. Gremeaux L, Fu Q, Chen J, Vankelecom H (2012) Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cells Dev 21:801–813PubMedCrossRefGoogle Scholar
  14. Grueneberg DA, Natesan S, Alexandre C, Gilman MZ (1992) Human and Drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science 257:1089–1095PubMedCrossRefGoogle Scholar
  15. Higuchi M, Kato T, Chen M, Yako H, Yoshida S, Kanno N, Kato Y (2013) Temporospatial gene expression of Prx1 and Prx2 is involved in morphogenesis of cranial placode-derived tissues through epithelio-mesenchymal interaction during rat embryogenesis. Cell Tissue Res 353:27–40PubMedCrossRefGoogle Scholar
  16. Ihida-Stansbury K, McKean DM, Gebb SA, Martin JF, Stevens T, Nemenoff R, Akeson A, Vaughn J, Jones PL (2004) Paired-related homeobox gene Prx1 is required for pulmonary vascular development. Circ Res 94:1507–1514PubMedCrossRefGoogle Scholar
  17. Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A (1992) Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor. Endocrinology 131:3110–3116PubMedGoogle Scholar
  18. Kern MJ, Witte DP, Valerius MT, Aronow BJ, Potter SS (1992) A novel murine homeobox gene isolated by a tissue-specific PCR cloning strategy. Nucleic Acids Res 20:5189–5195PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kongsuwan K, Webb E, Housiaux P, Adams JM (1988) Expression of multiple homeobox genes within diverse mammalian haemopoietic lineages. EMBO J 7:2131–2138PubMedCentralPubMedGoogle Scholar
  20. Kuratani S, Martin JF, Wawersik S, Lilly B, Eichele G, Olson EN (1994) The expression pattern of the chick homeobox gene gMHox suggests a role in patterning of the limbs and face and in compartmentalization of somites. Dev Biol 161:357–369PubMedCrossRefGoogle Scholar
  21. Leussink B, Brouwer A, Khattabi M el, Poelmann RE, Gittenberger-de Groot AC, Meijlink F (1995) Expression patterns of the paired-related homeobox genes MHox/Prx1 and S8/Prx2 suggest roles in development of the heart and the forebrain. Mech Dev 52:51–64Google Scholar
  22. Meijlink F, Beverdam A, Brouwer A, Oosterveen TC, Berge DT (1999) Vertebrate aristaless-related genes. Int J Dev Biol 43:651–663PubMedGoogle Scholar
  23. Mitchell JM, Hicklin DM, Doughty PM, Hicklin JH, Dickert JWJ, Tolbert SM, Peterkova R, Kern MJ (2006) The Prx1 homeobox gene is critical for molar tooth morphogenesis. J Dent Res 85:888–893PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mitsuishi H, Kato T, Chen M, Cai LY, Yako H, Higuchi M, Yoshida S, Kanno N, Ueharu H, Kato Y (2013) Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1. Cell Tissue Res 354:563–572PubMedCrossRefGoogle Scholar
  25. Nohno T, Koyama E, Myokai F, Taniguchi S, Ohuchi H, Saito T, Noji S (1993) A chicken homeobox gene related to Drosophila paired is predominantly expressed in the developing limb. Dev Biol 158:254–264PubMedCrossRefGoogle Scholar
  26. Norris RA, Scott KK, Moore CS, Stetten G, Brown CR, Jabs EW, Wulfsberg EA, Yu J, Kern MJ (2000) Human PRRX1 and PRRX2 genes: cloning, expression, genomic localization, and exclusion as disease genes for Nager syndrome. Mamm Genome 11:1000–1005PubMedCrossRefGoogle Scholar
  27. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–724PubMedCrossRefGoogle Scholar
  28. Opstelten DJ, Vogels R, Robert B, Kalkhoven E, Zwartkruis F, Laaf L de, Destree OH, Deschamps J, Lawson KA, Meijlink F (1991) The mouse homeobox gene, S8, is expressed during embryogenesis predominantly in mesenchyme. Mech Dev 34:29–41Google Scholar
  29. Reichert M, Takano S, Burstin J von, Kim SB, Lee JS, Ihida-Stansbury K, Hahn C, Heeg S, Schneider G, Rhim AD, Stanger BZ, Rustgi AK (2013) The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev 27:288–300Google Scholar
  30. Shimozaki K, Clemenson GD Jr, Gage FH (2013) Paired related homeobox protein 1 is a regulator of stemness in adult neural stem/progenitor cells. J Neurosci 33:4066–4075PubMedCrossRefGoogle Scholar
  31. Susa T, Ishikawa A, Kato T, Nakayama M, Kato Y (2009) Molecular cloning of paired related homeobox 2 (Prx2) as a novel pituitary transcription factor. J Reprod Dev 55:502–511PubMedCrossRefGoogle Scholar
  32. Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y (2012) Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 24:1201–1212PubMedCrossRefGoogle Scholar
  33. ten Berge D, Brouwer A, Korving J, Martin JF, Meijlink F (1998) Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 125:3831–3842PubMedGoogle Scholar
  34. Vankelecom H (2010) Pituitary stem/progenitor cells: embryonic players in the adult gland? Eur J Neurosci 32:2063–2081PubMedCrossRefGoogle Scholar
  35. Watkins-Chow DE, Camper SA (1998) How many homeobox genes does it take to make a pituitary gland? Trends Genet 14:284–290PubMedCrossRefGoogle Scholar
  36. Yako H, Kato T, Yoshida S, Inoue K, Kato Y (2011) Three-dimensional studies of Prop1-expressing cells in the rat pituitary primordium of Rathke's pouch. Cell Tissue Res 346:339–346PubMedCrossRefGoogle Scholar
  37. Yako H, Kato T, Yoshida S, Higuchi M, Chen M, Kanno N, Cai L-Y, Hiroki U, Kato Y (2013) Three-dimensional studies of Prop1-expressing cells in the rat pituitary just before birth. Cell Tissue Res 354:837–847PubMedCrossRefGoogle Scholar
  38. Yoshida S, Kato T, Susa T, Cai L-Y, Nakayama M, Kato Y (2009) PROP1 coexists with SOX2 and induces PIT1-commitment cells. Biochem Biophys Res Commun 385:11–15PubMedCrossRefGoogle Scholar
  39. Yoshida S, Kato T, Yako H, Susa T, Cai L-Y, Osuna M, Inoue K, Kato Y (2011) Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol 23:933–943PubMedCentralPubMedCrossRefGoogle Scholar
  40. Yoshida S, Kato T, Higuchi M, Yako H, Chen M, Kanno N, Ueharu H, Kato Y (2013) Rapid transition of NESTIN-expressing dividing cells from PROP1-positive to PIT1-positive advances prenatal pituitary development. J Neuroendocrinol 25:779–791PubMedCrossRefGoogle Scholar
  41. Zhu X, Rosenfeld MG (2004) Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr Opin Genet Dev 14:567–574PubMedCrossRefGoogle Scholar
  42. Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Masashi Higuchi
    • 1
    • 2
  • Saishu Yoshida
    • 3
  • Hiroki Ueharu
    • 3
  • Mo Chen
    • 3
  • Takako Kato
    • 1
    • 2
  • Yukio Kato
    • 2
    • 4
    Email author
  1. 1.Organization for the Strategic Coordination of Research and Intellectual PropertyMeiji UniversityKawasakiJapan
  2. 2.Institute of Reproduction and EndocrinologyMeiji UniversityKawasakiJapan
  3. 3.Division of Life Science, Graduate School of AgricultureMeiji UniversityKawasakiJapan
  4. 4.Department of Life Science, School of AgricultureMeiji UniversityKawasakiJapan

Personalised recommendations