Advertisement

Cell and Tissue Research

, Volume 355, Issue 3, pp 529–543 | Cite as

Actin filament dynamics and endothelial cell junctions: the Ying and Yang between stabilization and motion

  • Hans Schnittler
  • Muna Taha
  • Maria Odenthal Schnittler
  • Abdallah Abu Taha
  • Nico Lindemann
  • Jochen Seebach
Review

Abstract

The vascular endothelium is a cellular interface between the blood and the interstitial space of tissue, which controls the exchange of fluid, solutes and cells by both transcellular and paracellular means. To accomplish the demands on barrier function, the regulation of the endothelium requires quick and adaptive mechanisms. This is, among others, accomplished by actin dynamics that interdependently interact with both the VE-cadherin/catenin complex, the main components of the adherens type junctions in endothelium and the membrane cytoskeleton. Actin filaments in endothelium are components of super-structured protein assemblies that control a variety of dynamic processes such as endo- and exocytosis, shape change, cell–substrate along with cell–cell adhesion and cell motion. In endothelium, actin filaments are components of: (1) contractile actin bundles appearing as stress fibers and junction-associated circumferential actin filaments, (2) actin networks accompanied by endocytotic ruffles, lamellipodia at leading edges of migrating cells and junction-associated intermittent lamellipodia (JAIL) that dynamically maintain junction integrity, (3) cortical actin and (4) the membrane cytoskeleton. All these structures, most probably interact with cell junctions and cell–substrate adhesion sites. Due to the rapid growth in information, we aim to provide a bird’s eye view focusing on actin filaments in endothelium and its functional relevance for entire cell and junction integrity, rather than discussing the detailed molecular mechanism for control of actin dynamics.

Keywords

Vascular endothelium Actin VE-cadherin Membrane cytoskeleton Adherens-type junctions 

Notes

Acknowledgement

The German Research Council, DFG INST 2105/24-1 and SCHN 430/6-1 to H.S. supported this work.

References

  1. Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA 105:13–19PubMedCentralPubMedGoogle Scholar
  2. Aepfelbacher M, Essler M, Huber E, Sugai M, Weber PC (1997) Bacterial toxins block endothelial wound repair. Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells. Arterioscler Thromb Vasc Biol 17:1623–1629PubMedGoogle Scholar
  3. Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543PubMedGoogle Scholar
  4. Alcaide P, Newton G, Auerbach S, Sehrawat S, Mayadas TN, Golan DE, Yacono P, Vincent P, Kowalczyk A, Luscinskas FW (2008) p120-Catenin regulates leukocyte transmigration through an effect on VE-cadherin phosphorylation. Blood 112:2770–2779PubMedCentralPubMedGoogle Scholar
  5. Alcaide P, Martinelli R, Newton G, Williams MR, Adam A, Vincent PA, Luscinskas FW (2012) p120-Catenin prevents neutrophil transmigration independently of RhoA inhibition by impairing Src dependent VE-cadherin phosphorylation. Am J Physiol Cell Physiol 303:C385–C395PubMedCentralPubMedGoogle Scholar
  6. Aranda JF, Reglero-Real N, Kremer L, Marcos-Ramiro B, Ruiz-Saenz A, Calvo M, Enrich C, Correas I, Millan J, Alonso MA (2011) MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration. Mol Biol Cell 22:1252–1262PubMedCentralPubMedGoogle Scholar
  7. Ayalon O, Geiger B (1997) Cyclic changes in the organization of cell adhesions and the associated cytoskeleton, induced by stimulation of tyrosine phosphorylation in bovine aortic endothelial cells. J Cell Sci 110(Pt 5):547–556PubMedGoogle Scholar
  8. Beckers CM, van Hinsbergh VW, van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103:40–55PubMedGoogle Scholar
  9. Bennett V (1982) The molecular basis for membrane - cytoskeleton association in human erythrocytes. J Cell Biochem 18:49–65PubMedGoogle Scholar
  10. Benz PM, Blume C, Moebius J, Oschatz C, Schuh K, Sickmann A, Walter U, Feller SM, Renne T (2008) Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol 180:205–219PubMedCentralPubMedGoogle Scholar
  11. Birukova AA, Tian X, Tian Y, Higginbotham K, Birukov KG (2013) Rap-afadin axis in control of Rho signaling and endothelial barrier recovery. Mol Biol Cell 24:2678–2688PubMedCentralPubMedGoogle Scholar
  12. Bogatcheva NV, Garcia JG, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67:75–84Google Scholar
  13. Bourdoulous S, Orend G, MacKenna DA, Pasqualini R, Ruoslahti E (1998) Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J Cell Biol 143:267–276PubMedCentralPubMedGoogle Scholar
  14. Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM (2011) beta-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell 22:4047–4058PubMedCentralPubMedGoogle Scholar
  15. Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E (1996) Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 98:886–893PubMedCentralPubMedGoogle Scholar
  16. Chiasson CM, Wittich KB, Vincent PA, Faundez V, Kowalczyk AP (2009) p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol Biol Cell 20:1970–1980PubMedCentralPubMedGoogle Scholar
  17. Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H, Kim J, Kim YM, Kwon YG (2009) Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 114:3117–3126PubMedGoogle Scholar
  18. Dejana E, Vestweber D (2013) The Role VE-Cadherin in Vascular Morphogenesis and Permeability Control. In: VanRoy F (ed) Molecular Biology of Cadherins, vol 116. Progress in Molecular Biology and Translational Science, pp 119-144Google Scholar
  19. DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I, Vincent P (2001) Electrical impedance of cultured endothelium under fluid flow. Ann Biomed Eng 29:648–656PubMedGoogle Scholar
  20. Dickinson RB (2009) Models for actin polymerization motors. J Math Biol 58:81–103PubMedGoogle Scholar
  21. Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G (2005) Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 62:955–970PubMedGoogle Scholar
  22. Dominguez R (2010) Structural insights into de novo actin polymerization. Curr Opin Struct Biol 20:217–225PubMedCentralPubMedGoogle Scholar
  23. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915PubMedCentralPubMedGoogle Scholar
  24. Drenckhahn D (1982) Cell motility and cytoüplasmic filaments in vascular endothelium. In: Hammersen MK (ed) Bodensee Symposium on microcirculation. Karger, Basel, pp 60–79Google Scholar
  25. Drenckhahn D, Wagner J (1986) Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility. J Cell Biol 102:1738–1747PubMedGoogle Scholar
  26. Essler M, Amano M, Kruse HJ, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273:21867–21874PubMedGoogle Scholar
  27. Fels J, Jeggle P, Kusche-Vihrog K, Oberleithner H (2012) Cortical actin nanodynamics determines nitric oxide release in vascular endothelium. PLoS ONE 7:e41520PubMedCentralPubMedGoogle Scholar
  28. Fraccaroli A, Franco CA, Rognoni E, Neto F, Rehberg M, Aszodi A, Wedlich-Soldner R, Pohl U, Gerhardt H, Montanez E (2012) Visualization of endothelial actin cytoskeleton in the mouse retina. PLoS ONE 7:e47488PubMedCentralPubMedGoogle Scholar
  29. Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307:648–649PubMedGoogle Scholar
  30. Gabbiani G, Badonnel MC, Rona G (1975) Cytoplasmic contractile apparatus in aortic endothelial cells of hypertensive rats. Lab Invest 32:227–234PubMedGoogle Scholar
  31. Gabbiani G, Elemer G, Guelpa C, Vallotton MB, Badonnel MC, Huttner I (1979) Morphologic and functional changes of the aortic intima during experimental hypertension. Am J Pathol 96:399–422PubMedCentralPubMedGoogle Scholar
  32. Gabbiani G, Gabbiani F, Lombardi D, Schwartz SM (1983) Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc Natl Acad Sci USA 80:2361–2364PubMedCentralPubMedGoogle Scholar
  33. Geyer H, Geyer R, Odenthal-Schnittler M, Schnittler HJ (1999) Characterization of human vascular endothelial cadherin glycans [In Process Citation]. Glycobiology 9:915–925PubMedGoogle Scholar
  34. Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726PubMedGoogle Scholar
  35. Gordon SR, Staley CA (1990) Role of the cytoskeleton during injury-induced cell migration in corneal endothelium. Cell Motil Cytoskeleton 16:47–57PubMedGoogle Scholar
  36. Gotlieb AI (1990) The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicol Pathol 18:603–617PubMedGoogle Scholar
  37. Hatanaka K, Simons M, Murakami M (2011) Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Rac1 activation. Am J Physiol Heart Circ Physiol 300:H162–H172PubMedCentralPubMedGoogle Scholar
  38. Hoelzle MK, Svitkina T (2012) The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell 23:310–323PubMedCentralPubMedGoogle Scholar
  39. Hotulainen P, Lappalainen P (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173:383–394PubMedCentralPubMedGoogle Scholar
  40. Huttner I, Walker C, Gabbiani G (1985) Aortic endothelial cell during regeneration. Remodeling of cell junctions, stress fibers, and stress fiber-membrane attachment domains. Lab Invest 53:287–302PubMedGoogle Scholar
  41. Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H, de Rooij J (2012) Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol 196:641–652PubMedCentralPubMedGoogle Scholar
  42. Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677PubMedCentralPubMedGoogle Scholar
  43. Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138:181–192PubMedCentralPubMedGoogle Scholar
  44. Iyer S, Ferreri DM, DeCocco NC, Minnear FL, Vincent PA (2004) VE-cadherin-p120 interaction is required for maintenance of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 286:L1143–L1153PubMedGoogle Scholar
  45. Jinguji Y (2003) Developmental stage dependent expression of the endothelial stress fibers and organization of fibronectin fibrils in the aorta of chick embryos. Zool Sci 20:1359–1366PubMedGoogle Scholar
  46. Kano Y, Katoh K, Fujiwara K (2000) Lateral zone of cell-cell adhesion as the major fluid shear stress- related signal transduction site. Circ Res 86:425–433PubMedGoogle Scholar
  47. Kapus A, Janmey P (2013) Plasma membrane–cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 3:1231–1281PubMedGoogle Scholar
  48. Katoh K, Noda Y (2012) Distribution of cytoskeletal components in endothelial cells in the Guinea pig renal artery. Int J Biol 2012:439349Google Scholar
  49. Katoh K, Kano Y, Ookawara S (2008) Role of stress fibers and focal adhesions as a mediator for mechano-signal transduction in endothelial cells in situ. Vasc Health Risk Manag 4:1273–1282PubMedCentralPubMedGoogle Scholar
  50. Knudsen KA, Soler AP, Johnson KR, Wheelock MJ (1995) Interaction of alpha-actinin with the cadherin//catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 130:67–77PubMedGoogle Scholar
  51. Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6:21–30PubMedCentralPubMedGoogle Scholar
  52. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Ann Rev Physiol 72:463–493Google Scholar
  53. Konstantoulaki M, Kouklis P, Malik AB (2003) Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. Am J Physiol Lung Cell Mol Physiol 285:L434–L442PubMedGoogle Scholar
  54. Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS (2002) Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr Biol 12:379–382PubMedGoogle Scholar
  55. Kronstein R, Seebach J, Grossklaus S, Minten C, Engelhardt B, Drab M, Liebner S, Arsenijevic Y, Taha AA, Afanasieva T, Schnittler HJ (2012) Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc Res 93:130–140PubMedGoogle Scholar
  56. Kuldo JM, Asgeirsdottir SA, Zwiers PJ, Bellu AR, Rots MG, Schalk JA, Ogawara KI, Trautwein C, Banas B, Haisma HJ, Molema G, Kamps JA (2013) Targeted adenovirus mediated inhibition of NF-kappaB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo. J Control Release 166:57–65PubMedGoogle Scholar
  57. Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejana E (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522PubMedGoogle Scholar
  58. Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha- catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129:203–217PubMedGoogle Scholar
  59. Lecuit T (2008) “Developmental mechanics”: cellular patterns controlled by adhesion, cortical tension and cell division. HFSP J 2:72–78PubMedCentralPubMedGoogle Scholar
  60. Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319:2329–2336PubMedGoogle Scholar
  61. Liebner S, Cavallaro U, Dejana E (2006) The multiple languages of endothelial cell-to-cell communication. Arterioscler Thromb Vasc Biol 26:1431–1438PubMedGoogle Scholar
  62. Lindemann D, Schnittler H (2009) Genetic manipulation of endothelial cells by viral vectors. Thromb Haemost 102:1135–1143PubMedGoogle Scholar
  63. Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18:1363–1370PubMedGoogle Scholar
  64. Mannell H, Pircher J, Rathel T, Schilberg K, Zimmermann K, Pfeifer A, Mykhaylyk O, Gleich B, Pohl U, Krotz F (2012) Targeted endothelial gene delivery by ultrasonic destruction of magnetic microbubbles carrying lentiviral vectors. Pharm Res 29:1282–1294PubMedGoogle Scholar
  65. Marie H, Pratt SJ, Betson M, Epple H, Kittler JT, Meek L, Moss SJ, Troyanovsky S, Attwell D, Longmore GD, Braga VM (2003) The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with alpha-catenin. J Biol Chem 278:1220–1228PubMedGoogle Scholar
  66. Martinelli R, Kamei M, Sage PT, Massol R, Varghese L, Sciuto T, Toporsian M, Dvorak AM, Kirchhausen T, Springer TA, Carman CV (2013) Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J Cell Biol 201:449–465PubMedCentralPubMedGoogle Scholar
  67. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454PubMedGoogle Scholar
  68. Millan J, Cain RJ, Reglero-Real N, Bigarella C, Marcos-Ramiro B, Fernandez-Martin L, Correas I, Ridley AJ (2010) Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol 8:11PubMedCentralPubMedGoogle Scholar
  69. Mirzapoiazova T, Kolosova I, Usatyuk PV, Natarajan V, Verin AD (2006) Diverse effects of vascular endothelial growth factor on human pulmonary endothelial barrier and migration. Am J Physiol Lung Cell Mol Physiol 291:L718–L724PubMedGoogle Scholar
  70. Nakamura Y, Patrushev N, Inomata H, Mehta D, Urao N, Kim HW, Razvi M, Kini V, Mahadev K, Goldstein BJ, McKinney R, Fukai T, Ushio-Fukai M (2008) Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ Res 102:1182–1191PubMedCentralPubMedGoogle Scholar
  71. Napione L, Cascone I, Mitola S, Serini G, Bussolino F (2007) Integrins: a flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmun Rev 7:18–22PubMedGoogle Scholar
  72. Nelson CM, Chen CS (2003) VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci 116:3571–3581PubMedGoogle Scholar
  73. Nelson WJ, Dickinson DJ, Weis WI (2013) Roles of cadherins and catenins in cell-cell adhesion and epithelial cell polarity. Prog Mol Biol Transl Sci 116:3–23PubMedGoogle Scholar
  74. Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91:691–731PubMedCentralPubMedGoogle Scholar
  75. Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA (2005) The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol 169:191–202PubMedCentralPubMedGoogle Scholar
  76. Padrick SB, Rosen MK (2010) Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem 79:707–735PubMedCentralPubMedGoogle Scholar
  77. Patterson CE, Lum H (2001) Update on pulmonary edema: the role and regulation of endothelial barrier function. Endothelium 8:75–105PubMedGoogle Scholar
  78. Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679PubMedCentralPubMedGoogle Scholar
  79. Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG (2001) Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280:L1168–L1178PubMedGoogle Scholar
  80. Pokutta S, Weis WI (2007) Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 23:237–261PubMedGoogle Scholar
  81. Pokutta S, Drees F, Takai Y, Nelson WJ, Weis WI (2002) Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin. J Biol Chem 277:18868–18874PubMedCentralPubMedGoogle Scholar
  82. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465PubMedGoogle Scholar
  83. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576PubMedGoogle Scholar
  84. Potter MD, Barbero S, Cheresh DA (2005) Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. J Biol Chem 280:31906–31912PubMedGoogle Scholar
  85. Prasain N, Stevens T (2009) The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 77:53–63PubMedCentralPubMedGoogle Scholar
  86. Rajput C, Kini V, Smith M, Yazbeck P, Chavez A, Schmidt T, Zhang W, Knezevic N, Komarova Y, Mehta D (2013) Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2-Actin complex stabilizes endothelial adherens junctions. J Biol Chem 288:4241–4250PubMedCentralPubMedGoogle Scholar
  87. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607PubMedCentralPubMedGoogle Scholar
  88. Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY (2013) Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 33:911–933PubMedCentralPubMedGoogle Scholar
  89. Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA 92:8813–8817PubMedCentralPubMedGoogle Scholar
  90. Rottner K, Hänisch J, Campellone KG (2010) WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 20:650–661PubMedGoogle Scholar
  91. Rousseau S, Houle F, Huot J (2000) Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 10:321–327PubMedGoogle Scholar
  92. Rubenstein PA (1990) The functional importance of multiple actin isoforms. BioEssays 12:309–315PubMedGoogle Scholar
  93. Schnittler HJ, Wilke A, Gress T, Suttorp N, Drenckhahn D (1990) Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J Physiol 431:379–401PubMedCentralPubMedGoogle Scholar
  94. Schnittler HJ, Puschel B, Drenckhahn D (1997) Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress. Am J Physiol 273:H2396–H2405PubMedGoogle Scholar
  95. Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, Galla HJ, Schnittler HJ (2000) Endothelial barrier function under laminar fluid shear stress. Lab Invest 80:1819–1831PubMedGoogle Scholar
  96. Seebach J, Madler HJ, Wojciak-Stothard B, Schnittler HJ (2005) Tyrosine phosphorylation and the small GTPase rac cross-talk in regulation of endothelial barrier function. Thromb Haemost 94:620–629PubMedGoogle Scholar
  97. Seebach J, Donnert G, Kronstein R, Werth S, Wojciak-Stothard B, Falzarano D, Mrowietz C, Hell SW, Schnittler HJ (2007) Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc Res 75:596–607PubMedGoogle Scholar
  98. Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 87:272–280PubMedCentralPubMedGoogle Scholar
  99. Shirinsky VP, Antonov AS, Birukov KG, Sobolevsky AV, Romanov YA, Kabaeva NV, Antonova GN, Smirnov VN (1989) Mechano-chemical control of human endothelium orientation and size. J Cell Biol 109:331–339PubMedGoogle Scholar
  100. Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775PubMedGoogle Scholar
  101. Smeets EF, von Asmuth EJ, van der Linden CJ, Leeuwenberg JF, Buurman WA (1992) A comparison of substrates for human umbilical vein endothelial cell culture. Biotech Histochem 67:241–250PubMedGoogle Scholar
  102. Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Science’s STKE 2002:pe7Google Scholar
  103. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934PubMedGoogle Scholar
  104. Taflin C, Favier B, Charron D, Glotz D, Mooney N (2013) Study of the allogeneic response induced by endothelial cells expressing HLA class II after lentiviral transduction. Methods Mol Biol 960:461–472PubMedGoogle Scholar
  105. Taha AA, Schnittler H (2014) Dynamics between actin and the VE-cadherin/catenin complex-novel aspects of the ARP2/3 complex in regulation of endothelial junctions. Cell Adhesion Migration (in press)Google Scholar
  106. Taha AA, Taha M, Seebach J, Schnittler HJ (2014) ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol Biol Cell 25:245–256PubMedCentralPubMedGoogle Scholar
  107. Tang VW, Brieher WM (2012) alpha-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J Cell Biol 196:115–130PubMedCentralPubMedGoogle Scholar
  108. Thurston G, Baldwin AL (1994) Endothelial actin cytoskeleton in rat mesentery microvasculature. Am J Physiol 266:H1896–H1909PubMedGoogle Scholar
  109. Thurston G, Turner D (1994) Thrombin-induced increase of F-actin in human umbilical vein endothelial cells. MicrovascRes 47:1–20Google Scholar
  110. Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, Gunning PW, Lappalainen P (2011) A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 21:539–550PubMedGoogle Scholar
  111. Tojkander S, Gateva G, Lappalainen P (2012) Actin stress fibers–assembly, dynamics and biological roles. J Cell Sci 125:1855–1864PubMedGoogle Scholar
  112. Vandenbroucke St Amant E, Tauseef M, Vogel SM, Gao XP, Mehta D, Komarova YA, Malik AB (2012) PKCalpha activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ Res 111:739–749PubMedGoogle Scholar
  113. Vyalov S, Langille BL, Gotlieb AI (1996) Decreased blood flow rate disrupts endothelial repair in vivo. Am J Pathol 149:2107–2118PubMedCentralPubMedGoogle Scholar
  114. Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ (2005) Effects of Ebola Virus Glycoproteins on Endothelial Cell Activation and Barrier Function. J Virol 79:10442–10450PubMedCentralPubMedGoogle Scholar
  115. Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281:35593–35597PubMedCentralPubMedGoogle Scholar
  116. Weiss EE, Kroemker M, Rudiger AH, Jockusch BM, Rudiger M (1998) Vinculin is part of the cadherin-catenin junctional complex: complex formation between alpha-catenin and vinculin. J Cell Biol 141:755–764PubMedCentralPubMedGoogle Scholar
  117. White GE, Fujiwara K (1986) Expression and intracellular distribution of stress fibers in aortic endothelium. J Cell Biol 103:63–70PubMedGoogle Scholar
  118. White GE, Gimbrone MA Jr, Fujiwara K (1983) Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J Cell Biol 97:416–424PubMedGoogle Scholar
  119. Witting SR, Vallanda P, Gamble AL (2013) Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther 20:997–1005PubMedGoogle Scholar
  120. Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199PubMedGoogle Scholar
  121. Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ (1998) Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 176:150–165PubMedGoogle Scholar
  122. Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219:867–869PubMedGoogle Scholar
  123. Wong RK, Baldwin AL, Heimark RL (1999) Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. Am J Physiol 276:H736–H748PubMedGoogle Scholar
  124. Wysolmerski RB, Lagunoff D (1990) Involvement of myosin light-chain kinase in endothelial cell retraction. Proc Natl Acad Sci USA 87:16–20PubMedCentralPubMedGoogle Scholar
  125. Wysolmerski RB, Lagunoff D (1991) Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am J Physiol 261:C32–C40PubMedGoogle Scholar
  126. Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM, Dejana E, Faundez V, Kowalczyk AP (2005) p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell 16:5141–5151PubMedCentralPubMedGoogle Scholar
  127. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901PubMedCentralPubMedGoogle Scholar
  128. Yu PK, Yu D, Alder VA, Seydel U, Su E, Cringle SJ (1997) Heterogeneous endothelial cell structure along the porcine retinal microvasculature. Exp Eye Res 65:379–389PubMedGoogle Scholar
  129. Zhou K, Muroyama A, Underwood J, Leylek R, Ray S, Soderling SH, Lechler T (2013) Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation. Proc Natl Acad Sci USA 110:E3820–E3829PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hans Schnittler
    • 1
  • Muna Taha
    • 1
  • Maria Odenthal Schnittler
    • 1
  • Abdallah Abu Taha
    • 1
  • Nico Lindemann
    • 1
  • Jochen Seebach
    • 1
  1. 1.Institute of Anatomy and Vascular BiologyWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations