Advertisement

Cell and Tissue Research

, Volume 355, Issue 3, pp 557–576 | Cite as

Regulation of the endothelial barrier function: a filum granum of cellular forces, Rho-GTPase signaling and microenvironment

  • Joana Amado-Azevedo
  • Erik T. Valent
  • Geerten P. Van Nieuw AmerongenEmail author
Review

Abstract

Although the endothelium is an extremely thin single-cell layer, it performs exceedingly well in preventing blood fluids from leaking into the surrounding tissues. However, specific pathological conditions can affect this cell layer, compromising the integrity of the barrier. Vascular leakage is a hallmark of many cardiovascular diseases and despite its medical importance, no specialized therapies are available to prevent it or reduce it. Small guanosine triphosphatases (GTPases) of the Rho family are known to be key regulators of various aspects of cell behavior and studies have shown that they can exert both positive and negative effects on endothelial barrier integrity. Moreover, extracellular matrix stiffness has now been implicated in the regulation of Rho-GTPase signaling, which has a direct impact on the integrity of endothelial junctions. However, knowledge about both the precise mechanism of this regulation and the individual contribution of the specific regulatory proteins remains fragmentary. In this review, we discuss recent findings concerning the balanced activities of Rho-GTPases and, in particular, aspects of the regulation of the endothelial barrier. We highlight the role of Rho-GTPases in the intimate relationships between biomechanical forces, microenvironmental influences and endothelial intercellular junctions, which are all interwoven in a beautiful filigree-like fashion.

Keywords

Rho-GTPases Endothelial barrier Permeability Extracellular matrix stiffness Traction forces 

Notes

Acknowledgements

The authors thank Dr. Ramaswamy Krishnan for all the support and advice given for the traction force microscopy set-up at the VU University Medical Center.

Conflict of interest

The authors declare no conflicts of interest.

Funding

This work was supported by the Dutch Heart Foundation grant NHS2011T072.

References

  1. Adini I, Rabinovitz I, Sun JF, Prendergast GC, Benjamin LE (2003) RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev 17:2721–32. doi: 10.1101/gad.1134603 PubMedCentralPubMedGoogle Scholar
  2. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429. doi: 10.1101/cshperspect.a006429 PubMedCentralPubMedGoogle Scholar
  3. Ando K, Fukuhara S, Moriya T, Obara Y, Nakahata N, Mochizuki N (2013) Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organization. J Cell Biol 202:901–16. doi: 10.1083/jcb.201301115 PubMedCentralPubMedGoogle Scholar
  4. Arce FT, Whitlock JL, Birukova AA, Birukov KG, Arnsdorf MF, Lal R, Garcia JGN, Dudek SM (2008) Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin. Biophys J 95:886–94. doi: 10.1529/biophysj.107.127167 PubMedCentralPubMedGoogle Scholar
  5. Aspenström P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377:327–37. doi: 10.1042/BJ20031041 PubMedCentralPubMedGoogle Scholar
  6. Augustin HG, Kozian DH, Johnson RC (1994) Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays 16:901–6. doi: 10.1002/bies.950161208 PubMedGoogle Scholar
  7. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–77. doi: 10.1038/nrm2639 PubMedGoogle Scholar
  8. Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335:165–89. doi: 10.1007/s00441-008-0685-6 PubMedGoogle Scholar
  9. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–72. doi: 10.1038/35074532 PubMedGoogle Scholar
  10. Baumer Y, Drenckhahn D, Waschke J (2008) cAMP induced Rac 1-mediated cytoskeletal reorganization in microvascular endothelium. Histochem Cell Biol 129:765–78. doi: 10.1007/s00418-008-0422-y PubMedGoogle Scholar
  11. Baumgartner W (2003) Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells. J Cell Sci 116:1001–1011. doi: 10.1242/jcs.00322 PubMedGoogle Scholar
  12. Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A 97:4005–10. doi: 10.1073/pnas.070052697 PubMedCentralPubMedGoogle Scholar
  13. Bayless KJ, Salazar R, Davis GE (2000) RGD-Dependent Vacuolation and Lumen Formation Observed during Endothelial Cell Morphogenesis in Three-Dimensional Fibrin Matrices Involves the αvβ3 and α5β1 Integrins. Am J Pathol 156:1673–1683. doi: 10.1016/S0002-9440(10)65038-9
  14. Beckers CML, van Hinsbergh VWM, Van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103:40–55. doi: 10.1160/TH09-06-0403 PubMedGoogle Scholar
  15. Beningo KA, Wang Y-L (2002) Flexible substrata for the detection of cellular traction forces. Trends Cell Biol 12:79–84PubMedGoogle Scholar
  16. Birukov KG (2009) Small GTPases in mechanosensitive regulation of endothelial barrier. Microvasc Res 77:46–52. doi: 10.1016/j.mvr.2008.09.006 PubMedCentralPubMedGoogle Scholar
  17. Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JGN, Verin AD (2004) Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc Res 67:64–77. doi: 10.1016/j.mvr.2003.09.007 PubMedGoogle Scholar
  18. Birukova AA, Adyshev D, Gorshkov B, Bokoch GM, Birukov KG, Verin AD (2006) GEFH1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 290:L540–8. doi: 10.1152/ajplung.00259.2005 PubMedGoogle Scholar
  19. Birukova AA, Fu P, Xing J, Birukov KG (2009) Rap1 mediates protective effects of iloprost against ventilator-induced lung injury. J Appl Physiol 107:1900–10. doi: 10.1152/japplphysiol.00462.2009 PubMedCentralPubMedGoogle Scholar
  20. Birukova AA, Fu P, Xing J (2010) Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 298:837–48. doi: 10.1152/ajplung.00263.2009 Google Scholar
  21. Birukova AA, Tian X, Cokic I, Beckham Y, Gardel ML, Birukov KG (2013a) Endothelial barrier disruption and recovery is controlled by substrate stiffness. Microvasc Res 87:50–7. doi: 10.1016/j.mvr.2012.12.006 PubMedGoogle Scholar
  22. Birukova AA, Tian X, Tian Y, Higginbotham K, Birukov KG (2013b) Rap-afadin axis in control of Rho signaling and endothelial barrier recovery. Mol Biol Cell 24:2678–88. doi: 10.1091/mbc.E13-02-0098 PubMedCentralPubMedGoogle Scholar
  23. Bishop A, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–55PubMedCentralPubMedGoogle Scholar
  24. Braga VM (1999) Small GTPases and regulation of cadherin dependent cell-cell adhesion. Mol Pathol 52:197–202PubMedCentralPubMedGoogle Scholar
  25. Broman MT, Mehta D, Malik AB (2007) Cdc42 regulates the restoration of endothelial adherens junctions and permeability. Trends Cardiovasc Med 17:151–6. doi: 10.1016/j.tcm.2007.03.004 PubMedGoogle Scholar
  26. Bursac P, Fabry B, Trepat X, Lenormand G, Butler JP, Wang N, Fredberg JJ, An SS (2007) Cytoskeleton dynamics: fluctuations within the network. Biochem Biophys Res Commun 355:324–30. doi: 10.1016/j.bbrc.2007.01.191 PubMedCentralPubMedGoogle Scholar
  27. Byfield FJ, Reen RK, Shentu T-P, Levitan I, Gooch KJ (2009) Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J Biomech 42:1114–9. doi: 10.1016/j.jbiomech.2009.02.012 PubMedCentralPubMedGoogle Scholar
  28. Califano JP, Reinhart-King CA (2010) Exogenous and endogenous force regulation of endothelial cell behavior. J Biomech 43:79–86. doi: 10.1016/j.jbiomech.2009.09.012 PubMedGoogle Scholar
  29. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–57PubMedGoogle Scholar
  30. Chen CS (2008) Mechanotransduction - a field pulling together? J Cell Sci 121:3285–92. doi: 10.1242/jcs.023507 PubMedGoogle Scholar
  31. Cheng C, Haasdijk R, Tempel D, van de Kamp EHM, Herpers R, Bos F, Den Dekker WK, Blonden LAJ, de Jong R, Bürgisser PE, Chrifi I, Biessen EAL, Dimmeler S, Schulte-Merker S, Duckers HJ (2012) Endothelial cell-specific FGD5 involvement in vascular pruning defines neovessel fate in mice. Circulation 125:3142–58. doi: 10.1161/CIRCULATIONAHA.111.064030 Google Scholar
  32. Cherfils J, Zeghouf M (2013) Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309. doi: 10.1152/physrev.00003.2012 PubMedGoogle Scholar
  33. Chervin-Pétinot A, Courçon M, Almagro S, Nicolas A, Grichine A, Grunwald D, Prandini M-H, Huber P, Gulino-Debrac D (2012) Epithelial protein lost in neoplasm (EPLIN) interacts with α-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J Biol Chem 287:7556–72. doi: 10.1074/jbc.M111.328682 Google Scholar
  34. Chrzanowska-Wodnicka M, Kraus AE, Gale D, White GC, Vansluys J (2008) Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1bdeficient mice. Blood 111:2647–56. doi: 10.1182/blood-2007-08-109710 PubMedCentralPubMedGoogle Scholar
  35. Connolly MJ, Aaronson PI (2011) Key role of the RhoA/Rho kinase system in pulmonary hypertension. Pulm Pharmacol Ther 24:1–14. doi: 10.1016/j.pupt.2010.09.001 PubMedGoogle Scholar
  36. Conway DE, Schwartz MA (2013) Flow-dependent cellular mechanotransduction in atherosclerosis. J Cell Sci 126:5101–9. doi: 10.1242/jcs.138313 PubMedGoogle Scholar
  37. Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–30. doi: 10.1016/j.cub.2013.04.049 PubMedGoogle Scholar
  38. Crosby CV, Fleming PA, Argraves WS, Corada M, Zanetta L, Dejana E, Drake CJ (2005) VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood 105:2771–6. doi: 10.1182/blood-2004-06-2244 PubMedGoogle Scholar
  39. Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN (2005) Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 105:1950–5. doi: 10.1182/blood-2004-05-1987 PubMedGoogle Scholar
  40. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–70. doi: 10.1038/nrm1357 PubMedGoogle Scholar
  41. Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126(Pt 12):2545–9. doi: 10.1242/jcs.124529 PubMedGoogle Scholar
  42. Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–21. doi: 10.1016/j.devcel.2009.01.004 PubMedGoogle Scholar
  43. Del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–41. doi: 10.1126/science.1162912 PubMedGoogle Scholar
  44. Delanoë-Ayari H, Al Kurdi R, Vallade M, Gulino-debrac D, Riveline D (2004) Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc Natl Acad Sci 101:2229–2234Google Scholar
  45. Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70:2008–22. doi: 10.1016/S0006-3495(96)79767-9 PubMedCentralPubMedGoogle Scholar
  46. Di Lorenzo A, Lin MI, Murata T, Landskroner-Eiger S, Schleicher M, Kothiya M, Iwakiri Y, Yu J, Huang PL, Sessa WC (2013) eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J Cell Sci 126:5541–52. doi: 10.1242/jcs.115972 PubMedGoogle Scholar
  47. Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–43. doi: 10.1126/science.1116995, 80-PubMedGoogle Scholar
  48. Dransart E, Olofsson B, Cherfils J (2005) RhoGDIs revisited: novel roles in Rho regulation. Traffic 6:957–66. doi: 10.1111/j.1600-0854.2005.00335.x PubMedGoogle Scholar
  49. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–15. doi: 10.1016/j.cell.2005.09.021 PubMedCentralPubMedGoogle Scholar
  50. Dubrovskyi O, Birukova AA, Birukov KG (2013) Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab Invest 93:254–63. doi: 10.1038/labinvest.2012.159 PubMedCentralPubMedGoogle Scholar
  51. Dudek SM, Garcia JGN (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91:1487–1500PubMedGoogle Scholar
  52. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–83. doi: 10.1038/nature10137 PubMedGoogle Scholar
  53. Ebnet K (2008) Organization of multiprotein complexes at cell-cell junctions. Histochem Cell Biol 130:1–20. doi: 10.1007/s00418-008-0418-7 PubMedCentralPubMedGoogle Scholar
  54. Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478:260–3. doi: 10.1038/nature10430 PubMedCentralPubMedGoogle Scholar
  55. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher DE (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–28. doi: 10.1016/S0006-3495(04)74140-5 PubMedCentralPubMedGoogle Scholar
  56. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–89. doi: 10.1016/j.cell.2006.06.044 PubMedGoogle Scholar
  57. Erickson JW, Cerione RA (2004) Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes. Biochemistry 43:837–42. doi: 10.1021/bi036026v PubMedGoogle Scholar
  58. Essler M, Amano M, Kruse HJ, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273:21867–74. doi: 10.1074/jbc.273.34.21867 PubMedGoogle Scholar
  59. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–35. doi: 10.1038/nature01148 PubMedGoogle Scholar
  60. Eyckmans J, Boudou T, Yu X, Chen CS (2011) A hitchhiker’s guide to mechanobiology. Dev Cell 21:35–47. doi: 10.1016/j.devcel.2011.06.015 Google Scholar
  61. Fanning AS (1998) The Tight Junction Protein ZO-1 Establishes a Link between the Transmembrane Protein Occludin and the Actin Cytoskeleton. J Biol Chem 273:29745–29753. doi: 10.1074/jbc.273.45.29745 PubMedGoogle Scholar
  62. Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin A-P, Kéramidas M, Bouvard D, Coll J-L, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C (2013) CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 202:545–61. doi: 10.1083/jcb.201303044 Google Scholar
  63. Ferro T, Neumann P, Gertzberg N, Clements R, Johnson A (2000) Protein kinase Calpha mediates endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol 278:L1107–17PubMedGoogle Scholar
  64. Flanagan LA, Ju Y, Marg B, Osterfield M, Paul A (2002) Neurite branching on deformable substrates. Neuroreport 13:2411–2415PubMedCentralPubMedGoogle Scholar
  65. Fransson A, Ruusala A, Aspenström P (2003) Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278:6495–502. doi: 10.1074/jbc.M208609200 Google Scholar
  66. Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K, Mochizuki N (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25:136–46. doi: 10.1128/MCB.25.1.136-146.2005 PubMedCentralPubMedGoogle Scholar
  67. Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H, Araki S, Ueda T, Kikuchi A, Takai Y (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5:1321–8PubMedGoogle Scholar
  68. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705. doi: 10.1083/jcb.200204153 PubMedCentralPubMedGoogle Scholar
  69. Garcia JGN, Liu F, Verin AD, Birukova AA, Dechert MA, Gerthoffer WT, Bamberg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 108:689–701. doi: 10.1172/JCI12450 PubMedCentralPubMedGoogle Scholar
  70. Garcia-Mata R, Boulter E, Burridge K (2011) The “invisible hand”: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12:493–504. doi: 10.1038/nrm3153 PubMedCentralPubMedGoogle Scholar
  71. Garrett TA, Van Buul JD, Burridge K (2007) VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res 313:3285–97. doi: 10.1016/j.yexcr.2007.05.027 PubMedCentralPubMedGoogle Scholar
  72. Gavard J (2009) Breaking the VE-cadherin bonds. FEBS Lett 583:1–6. doi: 10.1016/j.febslet.2008.11.032 PubMedGoogle Scholar
  73. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–34. doi: 10.1038/ncb1486 PubMedGoogle Scholar
  74. Gavard J, Patel V, Gutkind JS (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14:25–36. doi: 10.1016/j.devcel.2007.10.019 PubMedGoogle Scholar
  75. Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90:3012–8. doi: 10.1529/biophysj.105.073114 PubMedCentralPubMedGoogle Scholar
  76. Gertzberg N, Neumann P, Rizzo V, Johnson A (2004) NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol 286:L37–48. doi: 10.1152/ajplung.00116.2003 PubMedGoogle Scholar
  77. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836. doi: 10.1039/b804103b Google Scholar
  78. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE (2008) Tumorderived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105:11305–10. doi: 10.1073/pnas.0800835105 PubMedCentralPubMedGoogle Scholar
  79. Giannotta M, Trani M, Dejana E (2013) VE-Cadherin and Endothelial Adherens Junctions: Active Guardians of Vascular Integrity. Dev Cell 26:441–54. doi: 10.1016/j.devcel.2013.08.020 PubMedGoogle Scholar
  80. Goeckeler ZM, Wysolmerski RB (1995) Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 130:613–27PubMedGoogle Scholar
  81. Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL (2011) Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med 3:88ps25. doi: 10.1126/scitranslmed.3002011 PubMedGoogle Scholar
  82. Gorovoy M, Neamu R, Niu J, Vogel S, Predescu D, Miyoshi J, Takai Y, Kini V, Mehta D, Malik AB, Voyno-Yasenetskaya T (2007) RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs. Circ Res 101:50–8. doi: 10.1161/CIRCRESAHA.106.145847 PubMedGoogle Scholar
  83. Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J Biomed Mater Res A 66:605–14. doi: 10.1002/jbm.a.10585 PubMedGoogle Scholar
  84. Guilluy C, Garcia-Mata R, Burridge K (2011a) Rho protein crosstalk: another social network? Trends Cell Biol 21:718–726PubMedCentralPubMedGoogle Scholar
  85. Guilluy C, Swaminathan V, Garcia-Mata R, Brien ETO, Superfine R, Burridge K (2011b) The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol 13:724–729. doi: 10.1038/ncb2254 Google Scholar
  86. Gulino-Debrac D (2013) Mechanotransduction at the basis of endothelial barrier function. Tissue Barriers 1:e24180. doi: 10.4161/tisb.24180 PubMedCentralPubMedGoogle Scholar
  87. Hall A (2012) Rho family GTPases. Biochem Soc Trans 40:1378–82. doi: 10.1042/BST20120103 PubMedGoogle Scholar
  88. Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ (2012) Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship between Traction Forces and Focal Adhesions. Biophys J 103:640–8. doi: 10.1016/j.bpj.2012.07.023 PubMedCentralPubMedGoogle Scholar
  89. Hardin C, Rajendran K, Manomohan G, Tambe DT, Butler JP, Fredberg JJ, Martinelli R, Carman CV, Krishnan R (2013) Glassy Dynamics, Cell Mechanics, and Endothelial Permeability. J Phys Chem B. doi: 10.1021/jp4020965 PubMedGoogle Scholar
  90. Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280:2112–4PubMedGoogle Scholar
  91. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–9. doi: 10.1016/j.bbamem.2007.07.012 PubMedCentralPubMedGoogle Scholar
  92. Hayakawa M, Matsushima M, Hagiwara H, Oshima T, Fujino T, Ando K, Kikugawa K, Tanaka H, Miyazawa K, Kitagawa M (2008) Novel insights into FGD3, a putative GEF for Cdc42, that undergoes SCF(FWD1/beta-TrCP)-mediated proteasomal degradation analogous to that of its homologue FGD1 but regulates cell morphology and motility differently from FGD1. Genes Cells 13:329–42. doi: 10.1111/j.1365-2443.2008.01168.x PubMedGoogle Scholar
  93. He F, Yin F, Omran A, Yang L, Xiang Q, Peng J (2012) PKC and RhoA signals crosstalk in Escherichia coli endotoxin induced alterations in brain endothelial permeability. Biochem Biophys Res Commun 425:182–8. doi: 10.1016/j.bbrc.2012.07.063 PubMedGoogle Scholar
  94. Ho M, Yang E, Matcuk G, Deng D, Sampas N, Tsalenko A, Tabibiazar R, Zhang Y, Chen M, Talbi S, Ho YD, Wang J, Tsao PS, Ben-Dor A, Yakhini Z, Bruhn L, Quertermous T (2003) Identification of endothelial cell genes by combined database mining and microarray analysis. Physiol Genomics 13:249–62. doi: 10.1152/physiolgenomics.00186.2002 PubMedGoogle Scholar
  95. Hoelzle MK, Svitkina T (2012) The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell 23:310–23. doi: 10.1091/mbc.E11-08-0719 PubMedCentralPubMedGoogle Scholar
  96. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–23. doi: 10.1038/nature10316 PubMedGoogle Scholar
  97. Howe GA, Addison CL (2012) RhoB controls endothelial cell morphogenesis in part via negative regulation of RhoA. Vasc Cell 4:1. doi: 10.1186/2045-824X-4-1 PubMedCentralPubMedGoogle Scholar
  98. Huber C, Mårtensson A, Bokoch GM, Nemazee D, Gavin AL (2008) FGD2, a CDC42- specific exchange factor expressed by antigen-presenting cells, localizes to early endosomes and active membrane ruffles. J Biol Chem 283:34002–12. doi: 10.1074/jbc.M803957200 PubMedCentralPubMedGoogle Scholar
  99. Hur SS, del Ãlamo JC, Park JS, Li Y-S, Nguyen HA, Teng D, Wang K-C, Flores L, Alonso-Latorre B, Lasheras JC, Chien S (2012) Roles of cell confluency and fluid shear in 3-dimensional intracellular forces in endothelial cells. Proc Natl Acad Sci U S A 109:11110–5. doi: 10.1073/pnas.1207326109 PubMedCentralPubMedGoogle Scholar
  100. Huveneers S, Danen EHJ (2010) The interaction of SRC kinase with beta3 integrin tails: a potential therapeutic target in thrombosis and cancer. Sci World J 10:1100–5. doi: 10.1100/tsw.2010.114 Google Scholar
  101. Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H, de Rooij J (2012) Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol 196:641–52. doi: 10.1083/jcb.201108120 PubMedCentralPubMedGoogle Scholar
  102. Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP, Montague CR, King MR, Schaffer CB, Reinhart-King CA (2011) Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med 3:112ra122. doi: 10.1126/scitranslmed.3002761 PubMedCentralPubMedGoogle Scholar
  103. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–69. doi: 10.1146/annurev.cellbio.21.020604.150721 PubMedGoogle Scholar
  104. Kajimoto H, Hashimoto K, Bonnet SN, Haromy A, Harry G, Moudgil R, Nakanishi T, Rebeyka I, Thébaud B, Michelakis ED, Archer SL (2007) Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction. Circulation 115:1777–88. doi: 10.1161/CIRCULATIONAHA.106.649566 Google Scholar
  105. Kass DA (2005) Ventricular arterial stiffening: integrating the pathophysiology. Hypertension 46:185–93. doi: 10.1161/01.HYP.0000168053.34306.d4 PubMedGoogle Scholar
  106. Katsumi A, Milanini J, Kiosses WB, del Pozo MA, Kaunas R, Chien S, Hahn KM, Schwartz MA (2002) Effects of cell tension on the small GTPase Rac. J Cell Biol 158:153–64. doi: 10.1083/jcb.200201105 PubMedCentralPubMedGoogle Scholar
  107. Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A 102:15895–900. doi: 10.1073/pnas.0506041102 PubMedCentralPubMedGoogle Scholar
  108. Kim H, Ha T (2013) Single-molecule nanometry for biological physics. Rep Prog Phys 76:016601. doi: 10.1088/0034-4885/76/1/016601 PubMedCentralPubMedGoogle Scholar
  109. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of Angiogenesis in Vivo by Ligation of Integrin α5β1 with the Central Cell-Binding Domain of Fibronectin. Am J Pathol 156:1345–1362. doi: 10.1016/S0002-9440(10)65005-5 Google Scholar
  110. Kim K-M, Csortos C, Czikora I, Fulton D, Umapathy NS, Olah G, Verin AD (2012) Molecular characterization of myosin phosphatase in endothelium. J Cell Physiol 227:1701–8. doi: 10.1002/jcp.22894 PubMedCentralPubMedGoogle Scholar
  111. Klein EAE, Castagnino P, Kothapalli D, Yin L, Byfield FJ, Xu T, Levental I, Hawthorne E, Janmey PA, Assoian RK (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19:1511–1518. doi: 10.1016/j.cub.2009.07.069.Cell PubMedCentralPubMedGoogle Scholar
  112. Knezevic N, Roy A, Timblin B, Konstantoulaki M, Sharma T, Malik AB, Mehta D (2007) GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability. Mol Cell Biol 27:6323–33. doi: 10.1128/MCB.00523-07 PubMedCentralPubMedGoogle Scholar
  113. Knezevic II, Predescu SA, Neamu RF, Gorovoy MS, Knezevic NM, Easington C, Malik AB, Predescu DN (2009) Tiam1 and Rac1 are required for platelet-activating factorinduced endothelial junctional disassembly and increase in vascular permeability. J Biol Chem 284:5381–94. doi: 10.1074/jbc.M808958200 PubMedCentralPubMedGoogle Scholar
  114. Koch AW, Bozic D, Pertz O, Engel J (1999) Homophilic adhesion by cadherins. Curr Opin Struct Biol 9:275–81. doi: 10.1016/S0959-440X(99)80038-4 PubMedGoogle Scholar
  115. Kolodney MS, Wysolmerski RB (1992) Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol 117:73–82PubMedGoogle Scholar
  116. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–93. doi: 10.1146/annurev-physiol-021909-135833 PubMedGoogle Scholar
  117. Kooistra MRH, Dubé N, Bos JL (2007) Rap1: a key regulator in cell-cell junction formation. J Cell Sci 120:17–22. doi: 10.1242/jcs.03306 PubMedGoogle Scholar
  118. Kouklis P, Konstantoulaki M, Vogel S, Broman M, Malik AB (2004) Cdc42 regulates the restoration of endothelial barrier function. Circ Res 94:159–66. doi: 10.1161/01.RES.0000110418.38500.31 PubMedGoogle Scholar
  119. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC (1998) p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280:2109–11PubMedGoogle Scholar
  120. Krishnan R, Klumpers DD, Park CY, Rajendran K, Trepat X, van Bezu J, van Hinsbergh VWM, Carman CV, Brain JD, Fredberg JJ, Butler JP, Van Nieuw Amerongen GP (2011) Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am J Physiol Cell Physiol 300:C146–54. doi: 10.1152/ajpcell.00195.2010 PubMedCentralPubMedGoogle Scholar
  121. Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90:3762–73. doi: 10.1529/biophysj.105.071506 PubMedCentralPubMedGoogle Scholar
  122. Kurogane Y, Miyata M, Kubo Y, Nagamatsu Y, Kundu RK, Uemura A, Ishida T, Quertermous T, Hirata K, Rikitake Y (2012) FGD5 mediates proangiogenic action of vascular endothelial growth factor in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 32:988–96. doi: 10.1161/ATVBAHA.111.244004 PubMedGoogle Scholar
  123. Lakshmikanthan S, Sobczak M, Chun C, Henschel A, Dargatz J, Ramchandran R, Chrzanowska-Wodnicka M (2011) Rap1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin αvβ3. Blood 118:2015–26. doi: 10.1182/blood-2011-04-349282 Google Scholar
  124. Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129:203–17PubMedGoogle Scholar
  125. Lampugnani MG, Zanetti A, Breviario F, Balconi G, Orsenigo F, Corada M, Spagnuolo R, Betson M, Braga V, Dejana E (2002) VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol Biol Cell 13:1175–89. doi: 10.1091/mbc.01-07-0368 PubMedCentralPubMedGoogle Scholar
  126. Leckband DE, le Duc Q, Wang N, de Rooij J (2011) Mechanotransduction at cadherinmediated adhesions. Curr Opin Cell Biol 23:523–30. doi: 10.1016/j.ceb.2011.08.003 PubMedGoogle Scholar
  127. Lee WL, Slutsky AS (2010) clinical implications of basic research Sepsis and Endothelial Permeability. N Engl J Med 363:689–691PubMedGoogle Scholar
  128. Lessey EC, Guilluy C, Burridge K (2012) From mechanical force to RhoA activation. Biochemistry 51:7420–32. doi: 10.1021/bi300758e PubMedCentralPubMedGoogle Scholar
  129. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906. doi: 10.1016/j.cell.2009.10.027 PubMedCentralPubMedGoogle Scholar
  130. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190:693–706. doi: 10.1083/jcb.201004082 PubMedCentralPubMedGoogle Scholar
  131. Loirand G, Sauzeau V, Pacaud P (2013) Small g proteins in the cardiovascular system: physiological and pathological aspects. Physiol Rev 93:1659–720. doi: 10.1152/physrev.00021.2012 PubMedGoogle Scholar
  132. Lu L, Oswald SJ, Ngu H, Yin FC-P (2008) Mechanical properties of actin stress fibers in living cells. Biophys J 95:6060–71. doi: 10.1529/biophysj.108.133462 PubMedCentralPubMedGoogle Scholar
  133. Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histaminetype mediators. J Cell Biol 42:647–672PubMedCentralPubMedGoogle Scholar
  134. Mao Y, Sun Q, Wang X, Ouyang Q, Han L, Jiang L, Han D (2009) In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl Phys Lett 95:013704. doi: 10.1063/1.3167546 Google Scholar
  135. Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A 108:4708–13. doi: 10.1073/pnas.1011123108 PubMedCentralPubMedGoogle Scholar
  136. Matsumoto T, Abe H, Ohashi T, Kato Y, Sato M (2002) Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method. Physiol Meas 23:635–48PubMedGoogle Scholar
  137. Mehta D, Malik AB (2006) Signaling Mechanisms Regulating Endothelial Permeability. Physiol Rev 86:279–367. doi: 10.1152/physrev.00012.2005 PubMedGoogle Scholar
  138. Michel CC (1996) Transport of macromolecules through microvascular walls. Cardiovasc Res 32:644–53PubMedGoogle Scholar
  139. Millán J, Cain RJ, Reglero-Real N, Bigarella C, Marcos-Ramiro B, Fernández-Martín L, Correas I, Ridley AJ (2010) Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol 8:11. doi: 10.1186/1741-7007-8-11 PubMedCentralPubMedGoogle Scholar
  140. Mitchell GF, Conlin PR, Dunlap ME, Lacourcière Y, Arnold JMO, Ogilvie RI, Neutel J, Izzo JL, Pfeffer MA (2008) Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension 51:105–11. doi: 10.1161/HYPERTENSIONAHA.107.099721 PubMedGoogle Scholar
  141. Mitin N, Rossman KL, Currin R, Anne S, Marshall TW, Bear JE, Bautch VL, Der CJ (2013) The RhoGEF TEM4 Regulates Endothelial Cell Migration by Suppressing Actomyosin Contractility. PLoS One 8:e66260. doi: 10.1371/journal.pone.0066260 PubMedCentralPubMedGoogle Scholar
  142. Monaghan-Benson E, Burridge K (2009) The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem 284:25602–11. doi: 10.1074/jbc.M109.009894 PubMedCentralPubMedGoogle Scholar
  143. Monaghan-Benson E, Wittchen ES (2011) In vitro analyses of endothelial cell permeability. Methods Mol Biol 763:281–90. doi: 10.1007/978-1-61779-191-8_19 PubMedGoogle Scholar
  144. Morel NM, Dodge AB, Patton WF, Herman IM, Hechtman HB, Shepro D (1989) Pulmonary microvascular endothelial cell contractility on silicone rubber substrate. J Cell Physiol 141:653–9. doi: 10.1002/jcp.1041410325 PubMedGoogle Scholar
  145. Naikawadi RP, Cheng N, Vogel SM, Qian F, Wu D, Malik AB, Ye RD (2012) A critical role for phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 in endothelial junction disruption and vascular hyperpermeability. Circ Res 111:1517–27. doi: 10.1161/CIRCRESAHA.112.273078 PubMedCentralPubMedGoogle Scholar
  146. Nakhaei-Nejad M, Haddad G, Zhang Q-X, Murray AG (2012) Facio-genital dysplasia-5 regulates matrix adhesion and survival of human endothelial cells. Arterioscler Thromb Vasc Biol 32:2694–701. doi: 10.1161/ATVBAHA.112.300074 PubMedGoogle Scholar
  147. Narumiya S, Ishizaki T, Watanabe N (1997) Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 410:68–72. doi: 10.1016/S0014-5793(97)00317-7 PubMedGoogle Scholar
  148. Ngok SP, Geyer R, Kourtidis A, Mitin N, Feathers R, Der C, Anastasiadis PZ (2013) TEM4 is a junctional Rho GEF required for cell-cell adhesion, monolayer integrity and barrier function. J Cell Sci 126:3271–7. doi: 10.1242/jcs.123869 PubMedGoogle Scholar
  149. Noren NK, Niessen CM, Gumbiner BM, Burridge K (2001) Cadherin engagement regulates Rho family GTPases. J Biol Chem 276:33305–8. doi: 10.1074/jbc.C100306200 PubMedGoogle Scholar
  150. Nuno DW, England SK, Lamping KG (2012) RhoA localization with caveolin-1 regulates vascular contractions to serotonin. Am J Physiol Regul Integr Comp Physiol 303:R959–67. doi: 10.1152/ajpregu.00667.2011 PubMedCentralPubMedGoogle Scholar
  151. Ohayon J, Gharib AM, Garcia A, Heroux J, Yazdani SK, Malvè M, Tracqui P, Martinez M-A, Doblare M, Finet G, Pettigrew RI (2011) Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI. Am J Physiol Heart Circ Physiol 301:H1097–106. doi: 10.1152/ajpheart.01120.2010 PubMedCentralPubMedGoogle Scholar
  152. Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11:545–54PubMedGoogle Scholar
  153. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20. doi: 10.1016/j.devcel.2005.12.006 PubMedGoogle Scholar
  154. Pannekoek W-J, Linnemann JR, Brouwer PM, Bos JL, Rehmann H (2013) Rap1 and Rap2 antagonistically control endothelial barrier resistance. PLoS One 8:e57903. doi: 10.1371/journal.pone.0057903 PubMedCentralPubMedGoogle Scholar
  155. Papaharalambus C, Sajjad W, Syed A, Zhang C, Bergo MO, Alexander RW, Ahmad M (2005) Tumor necrosis factor alpha stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase. J Biol Chem 280:18790–6. doi: 10.1074/jbc.M410081200 PubMedGoogle Scholar
  156. Pelham RJ, Wang YI (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94:13661–5PubMedCentralPubMedGoogle Scholar
  157. Pertz O (2010) Spatio-temporal Rho GTPase signaling - where are we now? J Cell Sci 123:1841–50. doi: 10.1242/jcs.064345 PubMedGoogle Scholar
  158. Peyton SR, Ghajar CM, Khatiwala CB, Putnam AJ (2007) The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 47:300–320. doi: 10.1007/s12013-007-0004-y PubMedGoogle Scholar
  159. Plotnikov SVV, Waterman CM (2013) Guiding cell migration by tugging. Curr Opin Cell Biol 25:619–26. doi: 10.1016/j.ceb.2013.06.003 PubMedGoogle Scholar
  160. Plotnikov SVV, Pasapera AM, Sabass B, Waterman CM (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–27. doi: 10.1016/j.cell.2012.11.034 PubMedGoogle Scholar
  161. Ponik SM, Trier SM, Wozniak MA, Eliceiri KW, Keely PJ (2013) RhoA is down-regulated at cell-cell contacts via p190RhoGAP-B in response to tensional homeostasis. Mol Biol Cell 24(1688–99):S1–3. doi: 10.1091/mbc.E12-05-0386 Google Scholar
  162. Popoff MR, Geny B (2009) Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim Biophys Acta 1788:797–812. doi: 10.1016/j.bbamem.2009.01.011 PubMedGoogle Scholar
  163. Post A, Pannekoek W-J, Ross SH, Verlaan I, Brouwer PM, Bos JL (2013) Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc Natl Acad Sci U S A 110:11427–32. doi: 10.1073/pnas.1306595110 PubMedCentralPubMedGoogle Scholar
  164. Qiao J, Huang F, Lum H (2003) PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 284:L972–80. doi: 10.1152/ajplung.00429.2002 PubMedGoogle Scholar
  165. Qiao J, Holian O, Lee B-S, Huang F, Zhang J, Lum H (2008) Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am J Physiol Cell Physiol 295:C1161–8. doi: 10.1152/ajpcell.00139.2008 PubMedCentralPubMedGoogle Scholar
  166. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–62. doi: 10.1161/CIRCULATIONAHA.105.541078 PubMedGoogle Scholar
  167. Reinhart-King CA, Dembo M, Hammer DA (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89:676–89. doi: 10.1529/biophysj.104.054320 PubMedCentralPubMedGoogle Scholar
  168. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–9. doi: 10.1016/j.tcb.2006.08.006 PubMedGoogle Scholar
  169. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–99PubMedGoogle Scholar
  170. Roca-Cusachs P, Gauthier NC, Del Rio A, Sheetz MP (2009) Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc Natl Acad Sci U S A 106:16245–50. doi: 10.1073/pnas.0902818106 PubMedCentralPubMedGoogle Scholar
  171. Rojas AM, Fuentes G, Rausell A, Valencia A (2012) The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 196:189–201. doi: 10.1083/jcb.201103008 PubMedCentralPubMedGoogle Scholar
  172. Rolfe BE, Worth NF, World CJ, Campbell JH, Campbell GR (2005) Rho and vascular disease. Atherosclerosis 183:1–16. doi: 10.1016/j.atherosclerosis.2005.04.023 PubMedGoogle Scholar
  173. Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang M, Schwartz MA (2013) Integrins in mechanotransduction. Curr Opin Cell Biol 25:613–8. doi: 10.1016/j.ceb.2013.05.006 PubMedGoogle Scholar
  174. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–80. doi: 10.1038/nrm1587 PubMedGoogle Scholar
  175. Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–4. doi: 10.1529/biophysj.105.071217 PubMedCentralPubMedGoogle Scholar
  176. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow C-W, Lisanti MP (2002) Microvascular hyperpermeability in caveolin-1(−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–8. doi: 10.1074/jbc.M205948200 Google Scholar
  177. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2:a005066. doi: 10.1101/cshperspect.a005066 PubMedCentralPubMedGoogle Scholar
  178. Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20:551–6. doi: 10.1016/j.ceb.2008.05.005 PubMedCentralPubMedGoogle Scholar
  179. Shao M, Yue Y, Sun G-Y, You Q-H, Wang N, Zhang D (2013) Caveolin-1 regulates Rac1 activation and rat pulmonary microvascular endothelial hyperpermeability induced by TNF-α. PLoS One 8:e55213. doi: 10.1371/journal.pone.0055213 PubMedCentralPubMedGoogle Scholar
  180. Shifrin Y, Arora PD, Ohta Y, Calderwood DA, Mcculloch CA (2009) The Role of FilGAPFilamin A Interactions in Mechanoprotection. Mol Biol Cell 20:1269–1279. doi: 10.1091/mbc.E08 PubMedCentralPubMedGoogle Scholar
  181. Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JGN, Birukov KG (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304:40–9. doi: 10.1016/j.yexcr.2004.11.001 PubMedGoogle Scholar
  182. Shiu Y-T, Li S, Marganski WA, Usami S, Schwartz MA, Wang Y-L, Dembo M, Chien S (2004) Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys J 86:2558–65. doi: 10.1016/S0006-3495(04)74311-8 PubMedCentralPubMedGoogle Scholar
  183. Siddiqui MR, Komarova YA, Vogel SM, Gao X, Bonini MG, Rajasingh J, Zhao Y-Y, Brovkovych V, Malik AB (2011) Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability. J Cell Biol 193:841–50. doi: 10.1083/jcb.201012129 PubMedCentralPubMedGoogle Scholar
  184. Sorokina EM, Chernoff J (2005) Rho-GTPases: new members, new pathways. J Cell Biochem 94:225–31. doi: 10.1002/jcb.20327 PubMedGoogle Scholar
  185. Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87:243–53. doi: 10.1093/cvr/cvq086 PubMedGoogle Scholar
  186. Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV (2012) Relocalization of junctional adhesion molecule A during inflammatory stimulation of brain endothelial cells. Mol Cell Biol 32:3414–27. doi: 10.1128/MCB.06678-11 PubMedCentralPubMedGoogle Scholar
  187. Storck EM, Wojciak-Stothard B (2013) Rho GTPases in pulmonary vascular dysfunction. Vascul Pharmacol 58:202–10. doi: 10.1016/j.vph.2012.09.004 PubMedGoogle Scholar
  188. Stricker J, Aratyn-Schaus Y, Oakes PW, Gardel ML (2011) Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophys J 100:2883–93. doi: 10.1016/j.bpj.2011.05.023 PubMedCentralPubMedGoogle Scholar
  189. Stroka KM, Aranda-Espinoza H (2011) Effects of Morphology vs. Cell-Cell Interactions on Endothelial Cell Stiffness. Cell Mol Bioeng 4:9–27. doi: 10.1007/s12195-010-0142-y PubMedCentralPubMedGoogle Scholar
  190. Stroka KM, Aranda-Espinoza H (2012) Effects of Morphology vs. Cell–Cell Interactions on Endothelial Cell Stiffness. Cell Mol Bioeng 4:9–27. doi: 10.1007/s12195-010-0142-y.Effects Google Scholar
  191. Su Z-J, Hahn CN, Goodall GJ, Reck NM, Leske AF, Davy A, Kremmidiotis G, Vadas MA, Gamble JR (2004) A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc Natl Acad Sci U S A 101:12212–7. doi: 10.1073/pnas.0404631101 PubMedCentralPubMedGoogle Scholar
  192. Sumi T, Matsumoto K, Takai Y, Nakamura T (1999) Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J Cell Biol 147:1519–32PubMedCentralPubMedGoogle Scholar
  193. Szulcek R, Beckers CML, Hodzic J, de Wit J, Chen Z, Grob T, Musters RJP, Minshall RD, van Hinsbergh VWM, Van Nieuw Amerongen GP (2013) Localized RhoA GTPase activity regulates dynamics of endothelial monolayer integrity. Cardiovasc Res 99:471–82. doi: 10.1093/cvr/cvt075 PubMedGoogle Scholar
  194. Taha AA, Taha M, Seebach J, Schnittler H-J (2014) ARP2/3-mediated junctionassociated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol Biol Cell 25:245–56. doi: 10.1091/mbc.E13-07-0404 PubMedCentralPubMedGoogle Scholar
  195. Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10:469–75. doi: 10.1038/nmat3025 PubMedCentralPubMedGoogle Scholar
  196. Tambe DT, Croutelle U, Trepat X, Park CY, Kim JH, Millet E, Butler JP, Fredberg JJ (2013) Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS One 8:e55172. doi: 10.1371/journal.pone.0055172 PubMedCentralPubMedGoogle Scholar
  197. Tan W, Palmby TR, Gavard J, Amornphimoltham P, Zheng Y, Gutkind JS (2008) An essential role for Rac1 in endothelial cell function and vascular development. FASEB J 22:1829–38. doi: 10.1096/fj.07-096438 PubMedGoogle Scholar
  198. Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 86–92Google Scholar
  199. Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86. doi: 10.1042/BC20060086 PubMedGoogle Scholar
  200. Terry S, Nie M, Matter K, Balda MS (2010) Rho signaling and tight junction functions. Physiology 25:16–26. doi: 10.1152/physiol.00034.2009 PubMedGoogle Scholar
  201. Thumkeo D, Watanabe S, Narumiya S (2013) Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 92:303–15. doi: 10.1016/j.ejcb.2013.09.002 PubMedGoogle Scholar
  202. Tian X, Tian Y, Gawlak G, Sarich N, Wu T, Birukova AA (2013) Control of vascular permeability by atrial natriuretic peptide via GEF-H1-dependent mechanism. J Biol Chem. doi: 10.1074/jbc.M113.493924 Google Scholar
  203. Tzima E (2006) Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res 98:176–85. doi: 10.1161/01.RES.0000200162.94463.d7 PubMedGoogle Scholar
  204. Van Nieuw Amerongen GP, Draijer R, Vermeer MA, van Hinsbergh VWM (1998) Transient and Prolonged Increase in Endothelial Permeability Induced by Histamine and Thrombin: Role of Protein Kinases, Calcium, and RhoA. Circ Res 83:1115–1123. doi: 10.1161/01.RES.83.11.1115 PubMedGoogle Scholar
  205. Van Nieuw Amerongen GP, Van Delft S, Vermeer MA, Collard JG, van Hinsbergh VWM (2000) Activation of RhoA by Thrombin in Endothelial Hyperpermeability: Role of Rho Kinase and Protein Tyrosine Kinases. Circ Res 87:335–340. doi: 10.1161/01.RES.87.4.335 PubMedGoogle Scholar
  206. Van Nieuw Amerongen GP, Koolwijk P, Versteilen AMG, van Hinsbergh VWM (2003) Involvement of RhoA/Rho Kinase Signaling in VEGF-Induced Endothelial Cell Migration and Angiogenesis In Vitro. Arterioscler Thromb Vasc Biol 23:211–217. doi: 10.1161/01.ATV.0000054198.68894.88 PubMedGoogle Scholar
  207. Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123:134–45. doi: 10.1196/annals.1420.016 PubMedGoogle Scholar
  208. Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C (2008) A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases. FEBS J 275:4074–87. doi: 10.1111/j.1742-4658.2008.06549.x PubMedGoogle Scholar
  209. Verin AD, Gilbert-McClain LI, Patterson CE, Garcia JGN (1998) Biochemical regulation of the nonmuscle myosin light chain kinase isoform in bovine endothelium. Am J Respir Cell Mol Biol 19:767–76. doi: 10.1165/ajrcmb.19.5.3126 PubMedGoogle Scholar
  210. Vestweber D, Winderlich M, Cagna G, Nottebaum AF (2009) Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 19:8–15. doi: 10.1016/j.tcb.2008.10.001 PubMedGoogle Scholar
  211. Vouret-Craviari V, Boquet P, Pouysségur J, Van Obberghen-Schilling E (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 9:2639–53PubMedCentralPubMedGoogle Scholar
  212. Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778:794–809. doi: 10.1016/j.bbamem.2007.09.003 PubMedGoogle Scholar
  213. Wang Y-X, Fitch RM (2004) Vascular stiffness: measurements, mechanisms and implications. Curr Vasc Pharmacol 2:379–84PubMedGoogle Scholar
  214. Wang X, Ha T (2013) Defining single molecular forces required to activate integrin and notch signaling. Science 340:991–4. doi: 10.1126/science.1231041 PubMedCentralPubMedGoogle Scholar
  215. Wang N, Butler JP, Ingber DE, Donald E (1993) Mechanotransduction Across the Cell Surface and Through the Cytoskeleton. Science 260:1124–1127, 80-PubMedGoogle Scholar
  216. Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, Wilde C, Curry FE, Drenckhahn D (2004) Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol 286:H394–401. doi: 10.1152/ajpheart.00221.2003 PubMedGoogle Scholar
  217. Waschke J, Burger S, Curry F-RE, Drenckhahn D, Adamson RH (2006) Activation of Rac-1 and Cdc42 stabilizes the microvascular endothelial barrier. Histochem Cell Biol 125:397–406. doi: 10.1007/s00418-005-0080-2 PubMedGoogle Scholar
  218. Weber GF, Bjerke MA, DeSimone DW (2011) Integrins and cadherins join forces to form adhesive networks. J Cell Sci 124:1183–93. doi: 10.1242/jcs.064618 PubMedCentralPubMedGoogle Scholar
  219. Weis SM (2008) Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol 15:243–9. doi: 10.1097/MOH.0b013e3282f97d86 PubMedGoogle Scholar
  220. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437:497–504. doi: 10.1038/nature03987 PubMedGoogle Scholar
  221. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–12. doi: 10.1242/jcs.01118 PubMedGoogle Scholar
  222. Wessells NK, Spooner BS, Ash JF, Bradley MO, Luduena MA, Taylor EL, Wrenn JT, Yamada K (1971) Microfilaments in cellular and developmental processes. Science 171:135–43PubMedGoogle Scholar
  223. Wittchen ES, Worthylake RA, Kelly P, Casey PJ, Quilliam LA, Burridge K (2005) Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function. J Biol Chem 280:11675–82. doi: 10.1074/jbc.M412595200 PubMedGoogle Scholar
  224. Wójciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199PubMedGoogle Scholar
  225. Wójciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–55PubMedGoogle Scholar
  226. Wójciak-Stothard B, Zhao L, Oliver E, Dubois O, Wu Y, Kardassis D, Vasilaki E, Huang M, Mitchell JA, Harrington LS, Louise H, Prendergast GC, Wilkins MR (2012) Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 110:1423–34. doi: 10.1161/CIRCRESAHA.112.264473 PubMedGoogle Scholar
  227. Wysolmerski RB, Lagunoff D (1990) Involvement of myosin light-chain kinase in endothelial cell retraction. Proc Natl Acad Sci U S A 87:16–20PubMedCentralPubMedGoogle Scholar
  228. Xiaolu D, Jing P, Fang H, Lifen Y, Liwen W, Ciliu Z, Fei Y (2011) Role of p115RhoGEF in lipopolysaccharide-induced mouse brain microvascular endothelial barrier dysfunction. Brain Res 1387:1–7. doi: 10.1016/j.brainres.2011.02.059 PubMedGoogle Scholar
  229. Xu K, Sacharidou A, Fu S, Chong DC, Skaug B, Chen ZJ, Davis GE, Cleaver O (2011) Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 20:526–39. doi: 10.1016/j.devcel.2011.02.010 PubMedCentralPubMedGoogle Scholar
  230. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901. doi: 10.1016/j.cell.2005.09.020 PubMedCentralPubMedGoogle Scholar
  231. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24–34. doi: 10.1002/cm.20041 PubMedGoogle Scholar
  232. Zaidel-Bar R, Geiger B (2010) The switchable integrin adhesome. J Cell Sci 123:1385–8. doi: 10.1242/jcs.066183 PubMedCentralPubMedGoogle Scholar
  233. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–90PubMedGoogle Scholar
  234. Zebda N, Tian Y, Tian X, Gawlak G, Higginbotham K, Reynolds AB, Birukova AA, Birukov KG (2013) Interaction of p190RhoGAP with C-terminal domain of p120- catenin modulates endothelial cytoskeleton and permeability. J Biol Chem 288:18290–9. doi: 10.1074/jbc.M112.432757 PubMedGoogle Scholar
  235. Zeng Q, Lagunoff D, Masaracchia R, Goeckeler Z, Côté G, Wysolmerski R (2000) Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II. J Cell Sci 113(Pt 3):471–82PubMedGoogle Scholar
  236. Zheng Y (2001) Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26:724–732PubMedGoogle Scholar
  237. Zheng Y, Fischer DJ, Santos MF, Tigyi G, Pasteris NG, Gorski JL, Xu Y (1996) The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem 271:33169–72PubMedGoogle Scholar
  238. Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25:932–43. doi: 10.1161/01.ATV.0000160548.78317.29 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joana Amado-Azevedo
    • 1
  • Erik T. Valent
    • 1
  • Geerten P. Van Nieuw Amerongen
    • 1
    Email author
  1. 1.Laboratory for Physiology, Institute for Cardiovascular ResearchVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations