Cell and Tissue Research

, Volume 356, Issue 3, pp 609–616 | Cite as

Glial epigenetics in neuroinflammation and neurodegeneration

Review

Abstract

Epigenetic regulation shapes the differentiation and response to stimuli of all tissues and cells beyond what genetics would dictate. Epigenetic regulation acts through covalent modifications of DNA and histones while leaving the nucleotide code intact. However, these chromatin modifications are known to be vital components of the regulation of cell fate and response. With regards to the central nervous system (CNS), little is known about how epigenetic regulation shapes the function of neural cell types. The focus of research so far has been on epigenetic regulation of neuronal function and the role of epigenetics in tumorigenesis. However, the glial cell compartment, which makes up 90 % of all CNS cells, has so far received scant attention as to how epigenetics shape their differentiation and function. Here, we highlight current knowledge about epigenetic changes in glial cells occurring during CNS injury, neuroinflammatory conditions and neurodegenerative disease. This review offers an overview of the current understanding of epigenetic regulation in glial cells in CNS disease.

Keywords

Glia Epigenetics Neurodegeneration Microglia Astrocytes Neuroinflammation 

References

  1. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161PubMedCrossRefGoogle Scholar
  2. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152PubMedCrossRefGoogle Scholar
  3. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, Zhang L, Farmer AD, Bell CJ, Kim RW, May GD, Woodward JE, Caillier SJ, McElroy JP, Gomez R, Pando MJ, Clendenen LE, Ganusova EE, Schilkey FD, Ramaraj T, Khan OA, Huntley JJ, Luo S, Kwok P, Wu TD, Schroth GP, Oksenberg JR, Hauser SL, Kingsmore SF (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356PubMedCentralPubMedCrossRefGoogle Scholar
  4. Black JC, Van Rechem C, Whetstine JR (2012) Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol Cell 48:491–507PubMedCrossRefGoogle Scholar
  5. Bouzier-Sore A-K, Pellerin L (2013) Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 7:179Google Scholar
  6. Camelo S, Iglesias AH, Hwang D, Due B, Ryu H, Smith K, Gray SG, Imitola J, Duran G, Assaf B, Langley B, Khoury SJ, Stephanopoulos G, De Girolami U, Ratan RR, Ferrante RJ, Dangond F (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 164:10–21PubMedCrossRefGoogle Scholar
  7. Chastain EML, Duncan DS, Rodgers JM, Miller SD (2011) The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta (BBA) - Mol Basis Dis 1812:265–274CrossRefGoogle Scholar
  8. Chen J, Zhou Y, Mueller-Steiner S, Chen L-F, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280:40364–40374PubMedCrossRefGoogle Scholar
  9. Chen P-S, Peng G-S, Li G, Yang S, Wu X, Wang C-C, Wilson B, Lu R-B, Gean P-W, Chuang D-M, Hong J-S (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116–1125PubMedCrossRefGoogle Scholar
  10. Chen PS, Wang C-C, Bortner CD, Peng G-S, Wu X, Pang H, Lu R-B, Gean P-W, Chuang D-M, Hong J-S (2007) Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 149:203–212PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chouliaras L, Rutten BPF, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HWM, van den Hove DLA (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90:498–510PubMedCrossRefGoogle Scholar
  12. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321PubMedCrossRefGoogle Scholar
  13. Conway GD, O’Bara MA, Vedia BH, Pol SU, Sim FJ (2012) Histone deacetylase activity is required for human oligodendrocyte progenitor differentiation. Glia 60:1944–1953PubMedCrossRefGoogle Scholar
  14. Cuadrado-Tejedor M, Ricobaraza AL, Torrijo R, Franco R, Garcia-Osta A (2013) Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer’s disease-like phenotype of a commonly used mouse model. Curr Pharm Des 19:5076–5084PubMedCrossRefGoogle Scholar
  15. Del Rio-Hortega P (1928) Tercera aportación al conocimiento morfoló gico e interpretacion funcional de la oligodendroglia. Mem R Soc Esp Hist Nat 14:40–122Google Scholar
  16. Del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and Cellular Pathology of the Nervous System. Hoeber, New York, pp 481–534Google Scholar
  17. Depboylu C, Stricker S, Ghobril J-P, Oertel WH, Priller J, Höglinger GU (2012) Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 238:183–191PubMedCrossRefGoogle Scholar
  18. Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286:9031–9037PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dieker J, Muller S (2009) Epigenetic Histone Code and Autoimmunity. Clin Rev Allergy Immunol 39:78–84CrossRefGoogle Scholar
  20. Ding H, Dolan PJ, Johnson GVW (2008) Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 106:2119–2130PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dupont C, Armant D, Brenner C (2009) Epigenetics: Definition, Mechanisms and Clinical Perspective. Semin Reprod Med 27:351–357PubMedCentralPubMedCrossRefGoogle Scholar
  22. Emery B (2010) Regulation of Oligodendrocyte Differentiation and Myelination. Science 330:779–782PubMedCrossRefGoogle Scholar
  23. Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, Ment LR, Vaccarino FM (2006) Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci 26:8609–8621PubMedCrossRefGoogle Scholar
  24. Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J (2013) Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol. Neurobiol 48:690–701Google Scholar
  25. Ge Z, Da Y, Xue Z, Zhang K, Zhuang H, Peng M, Li Y, Li W, Simard A, Hao J, Yao Z, Zhang R (2013) Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Exp Neurol 241:56–66PubMedCrossRefGoogle Scholar
  26. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845PubMedCentralPubMedCrossRefGoogle Scholar
  27. Giorgini F, Moller T, Kwan W, Zwilling D, Wacker JL, Hong S, Tsai L-CL, Cheah CS, Schwarcz R, Guidetti P, Muchowski PJ (2008) Histone Deacetylase Inhibition Modulates Kynurenine Pathway Activation in Yeast, Microglia, and Mice Expressing a Mutant Huntingtin Fragment. J Biol Chem 283:7390–7400PubMedCrossRefGoogle Scholar
  28. Goldmann T, Prinz M (2013) Role of microglia in CNS autoimmunity. Clin Dev Immunol 2013:208093PubMedCentralPubMedCrossRefGoogle Scholar
  29. Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16:1618–1626Google Scholar
  30. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 28:11500–11510PubMedCentralPubMedCrossRefGoogle Scholar
  31. Guo JU, Su Y, Zhong C, Ming G, Song H (2011) Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. Cell 145:423–434PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA (2012) Germline DNA Demethylation Dynamics and Imprint Erasure Through 5-Hydroxymethylcytosine. Science 339:448–452PubMedCrossRefGoogle Scholar
  33. Jensen CJ, Massie A, De Keyser J (2013) Immune players in the CNS: the astrocyte. J Neuroimmune Pharm Off J Soc NeuroImmune Pharm 8:824–839CrossRefGoogle Scholar
  34. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, Bennett DA, Calon F (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68:48–58PubMedCentralPubMedCrossRefGoogle Scholar
  35. Kannan V, Brouwer N, Hanisch U-K, Regen T, Eggen BJL, Boddeke HWGM (2013) Histone deacetylase inhibitors suppress immune activation in primary mouse microglia. J Neurosci Res 91:1133–1142PubMedCrossRefGoogle Scholar
  36. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738PubMedCrossRefGoogle Scholar
  37. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Hölscher C, Müller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280PubMedCrossRefGoogle Scholar
  38. Kim HJ, Rowe M, Ren M, Hong J-S, Chen P-S, Chuang D-M (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901PubMedCrossRefGoogle Scholar
  39. Kim M-J, Seong A-R, Yoo J-Y, Jin C-H, Lee Y-H, Kim YJ, Lee J, Jun WJ, Yoon H-G (2011) Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 55:1798–1808PubMedCrossRefGoogle Scholar
  40. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330PubMedCrossRefGoogle Scholar
  41. Lassmann H (2010) Axonal and neuronal pathology in multiple sclerosis: What have we learnt from animal models. Exp Neurol 225:2–8PubMedCrossRefGoogle Scholar
  42. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Hoi Yu AC (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8:67–80PubMedCrossRefGoogle Scholar
  43. Liggett T, Melnikov A, Tilwalli S, Yi Q, Chen H, Replogle C, Feng X, Reder A, Stefoski D, Balabanov R, Levenson V (2010) Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis. J Neurol Sci 290:16–21PubMedCentralPubMedCrossRefGoogle Scholar
  44. Liu Z, Fan Y, Won SJ, Neumann M, Hu D, Zhou L, Weinstein PR, Liu J (2007) Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke J Cereb Circ 38:146–152CrossRefGoogle Scholar
  45. Mack AF, Wolburg H (2012) A Novel Look at Astrocytes: Aquaporins, Ionic Homeostasis, and the Role of the Microenvironment for Regeneration in the CNS. Neuroscientist 19:195–207PubMedCrossRefGoogle Scholar
  46. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32:1161–1180PubMedCentralPubMedCrossRefGoogle Scholar
  47. Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch H-M, Probert L, Casaccia-Bonnefil P, Moscarello MA (2006) Increased Citrullination of Histone H3 in Multiple Sclerosis Brain and Animal Models of Demyelination: A Role for Tumor Necrosis Factor-Induced Peptidylarginine Deiminase 4 Translocation. J Neurosci 26:11387–11396PubMedCrossRefGoogle Scholar
  48. Möller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm 117:1001–1008PubMedCrossRefGoogle Scholar
  49. Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA 106:7876–7881PubMedCentralPubMedCrossRefGoogle Scholar
  50. Nuutinen T, Suuronen T, Kauppinen A, Salminen A (2010) Valproic acid stimulates clusterin expression in human astrocytes: Implications for Alzheimer’s disease. Neurosci Lett 475:64–68PubMedCrossRefGoogle Scholar
  51. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  52. Patel JR, Klein RS (2011) Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 585:3730–3737PubMedCentralPubMedCrossRefGoogle Scholar
  53. Pedre X, Mastronardi F, Bruck W, Lopez-Rodas G, Kuhlmann T, Casaccia P (2011) Changed Histone Acetylation Patterns in Normal-Appearing White Matter and Early Multiple Sclerosis Lesions. J Neurosci 31:3435–3445PubMedCentralPubMedCrossRefGoogle Scholar
  54. Peng G-S, Li G, Tzeng N-S, Chen P-S, Chuang D-M, Hsu Y-D, Yang S, Hong J-S (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Mol Brain Res 134:162–169PubMedCrossRefGoogle Scholar
  55. Perry VH, Nicoll JAR, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201PubMedCrossRefGoogle Scholar
  56. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235PubMedCrossRefGoogle Scholar
  57. Rafalski VA, Ho PP, Brett JO, Ucar D, Dugas JC, Pollina EA, Chow LML, Ibrahim A, Baker SJ, Barres BA, Steinman L, Brunet A (2013) Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol 15:614–624PubMedCentralPubMedCrossRefGoogle Scholar
  58. Rao JS, Keleshian VL, Klein S, Rapoport SI (2012) Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2:e132PubMedCentralPubMedCrossRefGoogle Scholar
  59. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386PubMedCrossRefGoogle Scholar
  60. Sanchez-Guajardo V, Barnum CJ, Tansey MG, Romero-Ramos M (2013) Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5:113–139PubMedCrossRefGoogle Scholar
  61. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SEW, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90PubMedCrossRefGoogle Scholar
  62. Schwob NG, Nalbantoglu J, Hastings KE, Mikkelsen T, Cashman NR (1990) DNA cytosine methylation in brain of patients with Alzheimer’s disease. Ann Neurol 28:91–94PubMedCrossRefGoogle Scholar
  63. Serrano-Pozo A, Muzikansky A, Gómez-Isla T, Growdon JH, Betensky RA, Frosch MP, Hyman BT (2013) Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 72:462–471PubMedCrossRefGoogle Scholar
  64. Shein NA, Shohami E (2011) Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol Med 17:448–456PubMedCentralPubMedCrossRefGoogle Scholar
  65. Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Lourbopoulos A, Polyzoidou E, Trembovler V, Mascagni P, Dinarello CA, Shohami E (2009) Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J 23:4266–4275PubMedCentralPubMedCrossRefGoogle Scholar
  66. Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJM, Casaccia-Bonnefil P (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11:1024–1034PubMedCentralPubMedCrossRefGoogle Scholar
  67. Shoulson I, Young AB (2011) Milestones in huntington disease. Mov Disord 26:1127–1133PubMedCrossRefGoogle Scholar
  68. Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M (2010) Role of Astrocytes in Brain Function and Disease. Toxicol Pathol 39:115–123PubMedCrossRefGoogle Scholar
  69. Smith SS, Kaplan BE, Sowers LC, Newman EM (1992) Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci USA 89:4744–4748PubMedCentralPubMedCrossRefGoogle Scholar
  70. Smolle M, Workman JL (2013) Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta BBA - Gene Regul Mech 1829:84–97CrossRefGoogle Scholar
  71. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622PubMedCrossRefGoogle Scholar
  72. Sung YM, Lee T, Yoon H, DiBattista AM, Song JM, Sohn Y, Moffat EI, Turner RS, Jung M, Kim J, Hoe H-S (2013) Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer’s disease. Exp Neurol 239:192–201PubMedCentralPubMedCrossRefGoogle Scholar
  73. Surmeier DJ, Sulzer D (2013) The pathology roadmap in Parkinson disease. Prion 7:85–91PubMedCentralPubMedCrossRefGoogle Scholar
  74. Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A (2003) Regulation of microglial inflammatory response by histone deacetylase inhibitors. J Neurochem 87:407–416PubMedCrossRefGoogle Scholar
  75. Swiss VA, Nguyen T, Dugas J, Ibrahim A, Barres B, Androulakis IP, Casaccia P (2011) Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PloS ONE 6:e18088PubMedCentralPubMedCrossRefGoogle Scholar
  76. Vashishtha M, Ng CW, Yildirim F, Gipson TA, Kratter IH, Bodai L, Song W, Lau A, Labadorf A, Vogel-Ciernia A, Troncosco J, Ross CA, Bates GP, Krainc D, Sadri-Vakili G, Finkbeiner S, Marsh JL, Housman DE, Fraenkel E, Thompson LM (2013) Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci USA 110:E3027–E3036PubMedCentralPubMedCrossRefGoogle Scholar
  77. Verkhratsky A, Olabarria M, Noristani HN, Yeh C-Y, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412PubMedCrossRefGoogle Scholar
  78. Virchow R (1856) Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Meidinger, Frankfurt am MainGoogle Scholar
  79. Waddington CH (1942) The Epigenotype. Endeavor 18–20Google Scholar
  80. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980PubMedCrossRefGoogle Scholar
  81. Wang F, Higgins JMG (2013) Histone modifications and mitosis: countermarks, landmarks, and bookmarks. Trends Cell Biol 23:175–184PubMedCrossRefGoogle Scholar
  82. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031PubMedCentralPubMedCrossRefGoogle Scholar
  83. Wu CT (2001) Genes, Genetics, and Epigenetics: A Correspondence. Science 293:1103–1105CrossRefGoogle Scholar
  84. Wu C-Y, Zha H, Xia Q-Q, Yuan Y, Liang X-Y, Li J-H, Guo Z-Y, Li J-J (2013) Expression of angiotensin II and its receptors in activated microglia in experimentally induced cerebral ischemia in the adult rats. Mol Cell Biochem 382:47–58PubMedCrossRefGoogle Scholar
  85. Xuan A, Long D, Li J, Ji W, Hong L, Zhang M, Zhang W (2012) Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci 90:463–468PubMedCrossRefGoogle Scholar
  86. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao X, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin–TCF interaction. Nat Neurosci 12:829–838PubMedCentralPubMedCrossRefGoogle Scholar
  87. Ye J, Liu Z, Wei J, Lu L, Huang Y, Luo L, Xie H (2013) Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway. Neurosci Lett 553:72–77PubMedCrossRefGoogle Scholar
  88. Yeh HH, Young D, Gelovani JG, Robinson A, Davidson Y, Herholz K, Mann DMA (2013) Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease. Brain Res 1504:16–24PubMedCrossRefGoogle Scholar
  89. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266PubMedCrossRefGoogle Scholar
  90. Zhang Z-Y, Schluesener HJ (2013) Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J Neuropathol Exp Neurol 72:178–185PubMedCrossRefGoogle Scholar
  91. Zhang Z-Y, Zhang Z, Fauser U, Schluesener HJ (2007) Global hypomethylation defines a sub-population of reactive microglia/macrophages in experimental traumatic brain injury. Neurosci Lett 429:1–6PubMedCrossRefGoogle Scholar
  92. Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang X-M, Kozikowski AP, Lyeth BG (2008) HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 1226:181–191PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of NeuropathologyUniversity of FreiburgFreiburgGermany
  2. 2.BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations