Cell and Tissue Research

, Volume 355, Issue 3, pp 485–514 | Cite as

Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches

  • Joachim Wegener
  • Jochen Seebach


Endothelial cells line the inner surface of all blood vessels and constitute a selective barrier between blood and tissue. Permeation of solutes across the endothelial cell monolayer occurs either paracellularly through specialized endothelial cell-cell junctions or transcellularly via special transport mechanisms including transcytosis, via the formation of transcellular channels, or by cell membrane transport proteins. Several in vitro assays have been developed in the past few decades to analyze the molecular mechanisms of transendothelial permeability. Measurement of the electrical resistance of the cell monolayer has proven to be particularly suitable for analyzing paracellular barrier function with high-time resolution over long time periods. We review the various permeability assays and focus on the electrical impedance analysis of endothelial cell monolayers. We also address current progress in the development of techniques used to investigate endothelial permeability with high-lateral resolution and under mechanical loads.


Endothelium Permeability Impedance analysis Transendothelial electrical resistance Electric cell-substrate impedance sensing 


  1. Aird WC (2007a) Phenotypic heterogeneity of the endothelium. I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedGoogle Scholar
  2. Aird WC (2007b) Phenotypic heterogeneity of the endothelium. II. Representative vascular beds. Circ Res 100:174–190PubMedGoogle Scholar
  3. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harbor Perspect Med 2:a006429Google Scholar
  4. Aman J, Bezu J van, Damanafshan A, Huveneers S, Eringa EC, Vogel SM, Groeneveld AB, Vonk Noordegraaf A, Hinsbergh VW van, Nieuw Amerongen GP van (2012) Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 126:2728–2738Google Scholar
  5. Anssari-Benam A, Korakianitis T (2013) Atherosclerotic plaques: is endothelial shear stress the only factor? Med Hypotheses 81:235–239PubMedGoogle Scholar
  6. Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19:583–594PubMedGoogle Scholar
  7. Azuma N, Akasaka N, Kito H, Ikeda M, Gahtan V, Sasajima T, Sumpio BE (2001) Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am J Physiol Heart Circ Physiol 280:H189–H197PubMedGoogle Scholar
  8. Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol 268:H1765–H1772PubMedGoogle Scholar
  9. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  10. Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271PubMedCentralPubMedGoogle Scholar
  11. Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701PubMedGoogle Scholar
  12. Berardi DE, Tarbell JM (2009) Stretch and shear interactions affect intercellular junction protein expression and turnover in endothelial cells. Cel Mol Bioeng 2:320–331Google Scholar
  13. Bergner S, Vatsyayan P, Matysik FM (2013) Recent advances in high resolution scanning electrochemical microscopy of living cells—a review. Anal Chim Acta 775:1–13PubMedGoogle Scholar
  14. Betzen C, White R, Zehendner CM, Pietrowski E, Bender B, Luhmann HJ, Kuhlmann CR (2009) Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med 47:1212–1220PubMedGoogle Scholar
  15. Bevan HS, Slater SC, Clarke H, Cahill PA, Mathieson PW, Welsh GI, Satchell SC (2011) Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 301:F733–F742PubMedCentralPubMedGoogle Scholar
  16. Birukov KG, Birukova AA, Dudek SM, Verin AD, Crow MT, Zhan X, DePaola N, Garcia JG (2002) Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am J Respir Cell Mol Biol 26:453–464PubMedGoogle Scholar
  17. Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JG (2003) Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 285:L785–L797PubMedGoogle Scholar
  18. Birukova AA, Chatchavalvanich S, Rios A, Kawkitinarong K, Garcia JG, Birukov KG (2006) Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch. Am J Pathol 168:1749–1761PubMedCentralPubMedGoogle Scholar
  19. Böcker M, Anczykowski B, Wegener JTS (2007) Scanning ion conductance microscopy with distance-modulated shear force control. Nanotechnology 18:145505Google Scholar
  20. Bojarski C, Bendfeldt K, Gitter AH, Mankertz J, Fromm M, Wagner S, Riecken EO, Schulzke JD (2000) Apoptosis and intestinal barrier function. Ann N Y Acad Sci 915:270–274PubMedGoogle Scholar
  21. Breslin JW, Kurtz KM (2009) Lymphatic endothelial cells adapt their barrier function in response to changes in shear stress. Lymphat Res Biol 7:229–237PubMedCentralPubMedGoogle Scholar
  22. Brower JB, Targovnik JH, Caplan MR, Massia SP (2010) High glucose-mediated loss of cell surface heparan sulfate proteoglycan impairs the endothelial shear stress response. Cytoskeleton 67:135–141PubMedGoogle Scholar
  23. Buschmann MH, Dieterich P, Adams NA, Schnittler HJ (2005) Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol Bioeng 89:493–502PubMedGoogle Scholar
  24. Cancel LM, Fitting A, Tarbell JM (2007) In vitro study of LDL transport under pressurized (convective) conditions. Am J Physiol Heart Circ Physiol 293:H126–H132PubMedGoogle Scholar
  25. Carpi-Medina P, Whittembury G (1988) Comparison of transcellular and transepithelial water osmotic permeabilities (Pos) in the isolated proximal straight tubule (PST) of the rabbit kidney. Pflugers Arch 412:66–74PubMedGoogle Scholar
  26. Chang YS, Yaccino JA, Lakshminarayanan S, Frangos JA, Tarbell JM (2000) Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism. Arterioscler Thromb Vasc Biol 20:35–42PubMedGoogle Scholar
  27. Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, Wasserman MA, Medford RM, Jaiswal AK, Kunsch C (2003) Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 278:703–711PubMedGoogle Scholar
  28. Chien S (2008) Effects of disturbed flow on endothelial cells. Ann Biomed Eng 36:554–562PubMedCentralPubMedGoogle Scholar
  29. Choi CK, English AE, Jun SI, Kihm KD, Rack PD (2007) An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosens Bioelectron 22:2585–2590PubMedGoogle Scholar
  30. Claude P (1978) Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol 39:219–232PubMedGoogle Scholar
  31. Cohen AW, Carbajal JM, Schaeffer RC (1999) VEGF stimulates tyrosine phosphorylation of beta-catenin and small-pore endothelial barrier dysfunction. Am J Physiol Heart Circ Physiol 277:H2038–H2049Google Scholar
  32. Collins NT, Cummins PM, Colgan OC, Ferguson G, Birney YA, Murphy RP, Meade G, Cahill PA (2006) Cyclic strain-mediated regulation of vascular endothelial occludin and ZO-1: influence on intercellular tight junction assembly and function. Arterioscler Thromb Vasc Biol 26:62–68PubMedGoogle Scholar
  33. Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–1030PubMedGoogle Scholar
  34. Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D (2011) The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci 12:40PubMedCentralPubMedGoogle Scholar
  35. Curtis TM, Tabb J, Romeo L, Schwager SJ, Widder MW, Schalie WH van der (2009a) Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor. J Appl Toxicol 29:374–380Google Scholar
  36. Curtis TM, Widder MW, Brennan LM, Schwager SJ, Schalie WH van der, Fey J, Salazar N (2009b) A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip 9:2176–2183Google Scholar
  37. Dartsch PC, Betz E (1989) Response of cultured endothelial cells to mechanical stimulation. Basic Res Cardiol 84:268–281PubMedGoogle Scholar
  38. Davies PF (1991) Mechanical sensing mechanisms: shear stress and endothelial cells. J Vasc Surg 13:729–731PubMedGoogle Scholar
  39. Davies PF (1997) Overview: temporal and spatial relationships in shear stress-mediated endothelial signalling. J Vasc Res 34:208–211PubMedGoogle Scholar
  40. Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73:1121–1129PubMedCentralPubMedGoogle Scholar
  41. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 83:2114–2117PubMedCentralPubMedGoogle Scholar
  42. Davies PF, Zilberberg J, Helmke BP (2003) Spatial microstimuli in endothelial mechanosignaling. Circ Res 92:359–370PubMedGoogle Scholar
  43. Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281:F579–F596PubMedGoogle Scholar
  44. Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126:2545–2549PubMedGoogle Scholar
  45. DeMaio L, Tarbell JM, Scaduto RC Jr, Gardner TW, Antonetti DA (2004) A transmural pressure gradient induces mechanical and biological adaptive responses in endothelial cells. Am J Physiol Heart Circ Physiol 286:H731–H741PubMedGoogle Scholar
  46. DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I, Vincent P (2001) Electrical impedance of cultured endothelium under fluid flow. Ann Biomed Eng 29:648–656PubMedGoogle Scholar
  47. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185PubMedGoogle Scholar
  48. Dieterich P, Odenthal-Schnittler M, Mrowietz C, Kramer M, Sasse L, Oberleithner H, Schnittler HJ (2000) Quantitative morphodynamics of endothelial cells within confluent cultures in response to fluid shear stress. Biophys J 79:1285–1297PubMedCentralPubMedGoogle Scholar
  49. Dimmeler S, Haendeler J, Rippmann V, Nehls M, Zeiher AM (1996) Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett 399:71–74PubMedGoogle Scholar
  50. Dubrovskyi O, Birukova AA, Birukov KG (2013) Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab Invest 93:254–263PubMedCentralPubMedGoogle Scholar
  51. Dvorak AM, Feng D (2001) The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 49:419–432PubMedGoogle Scholar
  52. Emmanuel C, Huynh M, Matthews J, Kelly E, Zoellner H (2013) TNF-alpha and TGF-beta synergistically stimulate elongation of human endothelial cells without transdifferentiation to smooth muscle cell phenotype. Cytokine 61:38–40PubMedGoogle Scholar
  53. Erben M, Decker S, Franke H, Galla HJ (1995) Electrical resistance measurements on cerebral capillary endothelial cells—a new technique to study small surface areas. J Biochem Biophys Methods 30:227–238PubMedGoogle Scholar
  54. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959PubMedCentralPubMedGoogle Scholar
  55. Fischbarg J, Lim JJ (1973) Determination of the impedance locus of rabbit corneal endothelium. Biophys J 13:595–599PubMedCentralPubMedGoogle Scholar
  56. FitzGerald OM, Hess EV, Chance A, Highsmith RF (1987) Quantitative studies of human monokine-induced endothelial cell elongation. J Leukoc Biol 41:421–428PubMedGoogle Scholar
  57. Fordjour AK, Harrington EO (2009) PKCdelta influences p190 phosphorylation and activity: events independent of PKCdelta-mediated regulation of endothelial cell stress fiber and focal adhesion formation and barrier function. Biochim Biophys Acta 1790:1179–1190PubMedCentralPubMedGoogle Scholar
  58. Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307:648–649PubMedGoogle Scholar
  59. Freiesleben-de Blasio B, Wegener J (2006) Impedance spectroscopy. Encyclopedia of medical technologies and instrumentation. Wiley, ChichesterGoogle Scholar
  60. Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdisc Rev Syst Biol Med 5:381–390Google Scholar
  61. Fujiwara K (2003) Mechanical stresses keep endothelial cells healthy: beneficial effects of a physiological level of cyclic stretch on endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 285:L782–L784PubMedGoogle Scholar
  62. Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A 81:3761–3764PubMedCentralPubMedGoogle Scholar
  63. Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A 88:7896–7900PubMedCentralPubMedGoogle Scholar
  64. Gitter AH, Bertog M, Schulzke J, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Pflugers Arch 434:830–840PubMedGoogle Scholar
  65. Gitter AH, Wullstein F, Fromm M, Schulzke JD (2001) Epithelial barrier defects in ulcerative colitis: characterization and quantification by electrophysiological imaging. Gastroenterology 121:1320–1328PubMedGoogle Scholar
  66. Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CR, Whitaker M, Moss GW, Benton DC, Sanchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE (2002) Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys J 83:3296–3303PubMedCentralPubMedGoogle Scholar
  67. Gorelik J, Zhang Y, Shevchuk AI, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2004) The use of scanning ion conductance microscopy to image A6 cells. Mol Cell Endocrinol 217:101–108PubMedGoogle Scholar
  68. Grab DJ, Nyarko E, Nikolskaia OV, Kim YV, Dumler JS (2009) Human brain microvascular endothelial cell traversal by Borrelia burgdorferi requires calcium signaling. Clin Microbiol Infect 15:422–426PubMedGoogle Scholar
  69. Grabowski EF, Jaffe EA, Weksler BB (1985) Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med 105:36–43PubMedGoogle Scholar
  70. Grimnes S, Martinsen OG (2000) Bioimpedance and bioelectricity basics. Academic Press, CornwallGoogle Scholar
  71. Gunzel D, Krug SM, Rosenthal R, Fromm M (2010) Biophysical methods to study tight junction permeability. Curr Top Membr 65:39–78Google Scholar
  72. Gunzel D, Zakrzewski SS, Schmid T, Pangalos M, Wiedenhoeft J, Blasse C, Ozboda C, Krug SM (2012) From TER to trans- and paracellular resistance: lessons from impedance spectroscopy. Ann N Y Acad Sci 1257:142–151PubMedGoogle Scholar
  73. Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313:1318–1325PubMedGoogle Scholar
  74. Heffernan M, Chance A, Hess EV, Highsmith RF, FitzGerald O (1994) Alterations in human endothelial cell morphology, proliferation and function by a macrophage-derived factor. Irish J Med Sci 163:359–365PubMedGoogle Scholar
  75. Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237:725–735PubMedGoogle Scholar
  76. Hordijk PL, Anthony E, Mul FP, Rientsma R, Oomen LC, Roos D (1999) Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci 112:1915–1923PubMedGoogle Scholar
  77. Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189PubMedCentralPubMedGoogle Scholar
  78. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668PubMedGoogle Scholar
  79. Ishida T, Takahashi M, Corson MA, Berk BC (1997) Fluid shear stress-mediated signal transduction: how do endothelial cells transduce mechanical force into biological responses? Ann N Y Acad Sci 811:12–23PubMedGoogle Scholar
  80. Jacob M, Chappell D (2013) Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care 19:282–289PubMedGoogle Scholar
  81. Janshoff A, Wegener J, Sieber M, Galla HJ (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103PubMedGoogle Scholar
  82. Jo H, Dull RO, Hollis TM, Tarbell JM (1991) Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol 260:H1992–H1996PubMedGoogle Scholar
  83. Jovov B, Wills NK, Lewis SA (1991) A spectroscopic method for assessing confluence of epithelial cell cultures. Am J Physiol 261:C1196–C1203PubMedGoogle Scholar
  84. Kadohama T, Akasaka N, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE (2006) p38 Mitogen-activated protein kinase activation in endothelial cell is implicated in cell alignment and elongation induced by fluid shear stress. Endothelium 13:43–50PubMedGoogle Scholar
  85. Kataoka N, Iwaki K, Hashimoto K, Mochizuki S, Ogasawara Y, Sato M, Tsujioka K, Kajiya F (2002) Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proc Natl Acad Sci U S A 99:15638–15643PubMedCentralPubMedGoogle Scholar
  86. Keese CR, Bhawe K, Wegener J, Giaever I (2002) Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques 33:842–850PubMedGoogle Scholar
  87. Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A 101:1554–1559PubMedCentralPubMedGoogle Scholar
  88. Keil JM, Liu X, Antonetti DA (2013) Glucocorticoid induction of occludin expression and endothelial barrier requires transcription factor p54 NONO. Invest Ophthalmol Vis Sci 54:4007–4015PubMedCentralPubMedGoogle Scholar
  89. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493PubMedGoogle Scholar
  90. Koslow AR, Stromberg RR, Friedman LI, Lutz RJ, Hilbert SL, Schuster P (1986) A flow system for the study of shear forces upon cultured endothelial cells. J Biomech Eng 108:338–341PubMedGoogle Scholar
  91. Kottra G, Fromter E (1984a) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures. Pflugers Arch 402:409–420PubMedGoogle Scholar
  92. Kottra G, Fromter E (1984b) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results. Pflugers Arch 402:421–432PubMedGoogle Scholar
  93. Krug SM, Fromm M, Gunzel D (2009) Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance. Biophys J 97:2202-2211PubMedCentralPubMedGoogle Scholar
  94. Lamontagne D, Pohl U, Busse R (1992) Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 70:123–130PubMedGoogle Scholar
  95. Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347PubMedGoogle Scholar
  96. Li S, Chen BP, Azuma N, Hu YL, Wu SZ, Sumpio BE, Shyy JY, Chien S (1999) Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. J Clin Invest 103:1141–1150PubMedCentralPubMedGoogle Scholar
  97. Lim JJ, Fischbarg J (1981) Electrical properties of rabbit corneal endothelium as determined from impedance measurements. Biophys J 36:677–695PubMedCentralPubMedGoogle Scholar
  98. Liu CL, Tam JC, Sanders AJ, Ko CH, Fung KP, Leung PC, Harding KG, Jiang WG, Lau CB (2013) Molecular angiogenic events of a two-herb wound healing formula involving MAPK and Akt signaling pathways in human vascular endothelial cells. Wound Repair Regen 21:579–587PubMedGoogle Scholar
  99. Liu Y, Collins C, Kiosses WB, Murray AM, Joshi M, Shepherd TR, Fuentes EJ, Tzima E (2013) A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress. J cell Biol 201:863–873PubMedCentralPubMedGoogle Scholar
  100. Lo CM, Keese CR, Giaever I (1994) pH changes in pulsed CO2 incubators cause periodic changes in cell morphology. Exp Cell Res 213:391–397PubMedGoogle Scholar
  101. Lo CM, Keese CR, Giaever I (1999) Cell-substrate contact: another factor may influence transepithelial electrical resistance of cell layers cultured on permeable filters. Exp Cell Res 250:576–580PubMedGoogle Scholar
  102. Lohmann C, Huwel S, Galla HJ (2002) Predicting blood–brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 10:263–276PubMedGoogle Scholar
  103. Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, New YorkGoogle Scholar
  104. Mahringer A, Ott M, Reimold I, Reichel V, Fricker G (2011) The ABC of the blood–brain barrier—regulation of drug efflux pumps. Curr Pharm Des 17:2762–2770PubMedGoogle Scholar
  105. Matter K, Balda MS (2003) Functional analysis of tight junctions. Methods 30:228–234PubMedGoogle Scholar
  106. McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213:221–228PubMedGoogle Scholar
  107. Miao H, Hu YL, Shiu YT, Yuan S, Zhao Y, Kaunas R, Wang Y, Jin G, Usami S, Chien S (2005) Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations. J Vasc Res 42:77–89PubMedGoogle Scholar
  108. Michaelis S, Rommel CE, Endell J, Goring P, Wehrspohn R, Steinem C, Janshoff A, Galla HJ, Wegener J (2012) Macroporous silicon chips for laterally resolved, multi-parametric analysis of epithelial barrier function. Lab Chip 12:2329–2336PubMedGoogle Scholar
  109. Michaelis S, Wegener J, Robelek R (2013) Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling. Biosens Bioelectron 49:63–70PubMedGoogle Scholar
  110. Miller DS, Cannon RE (2013) Signaling pathways that regulate basal ABC transporter activity at the blood–brain barrier. Curr Pharm Des (in press)Google Scholar
  111. Moy AB, Winter M, Kamath A, Blackwell K, Reyes G, Giaever I, Keese C, Shasby DM (2000) Histamine alters endothelial barrier function at cell-cell and cell-matrix sites. Am J Physiol Lung Cell Mol Physiol 278:L888–L898PubMedGoogle Scholar
  112. Mun GI, Jang SI, Boo YC (2013) Laminar shear stress induces the expression of aquaporin 1 in endothelial cells involved in wound healing. Biochem Biophys Res Commun 430:554–559PubMedGoogle Scholar
  113. Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532–H1538PubMedGoogle Scholar
  114. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171PubMedCentralPubMedGoogle Scholar
  115. Neuhaus W, Bogner E, Wirth M, Trzeciak J, Lachmann B, Gabor F, Noe CR (2006) A novel tool to characterize paracellular transport: the APTS-dextran ladder. Pharm Res 23:1491–1501PubMedGoogle Scholar
  116. Noria S, Cowan DB, Gotlieb AI, Langille BL (1999) Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ Res 85:504–514PubMedGoogle Scholar
  117. Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6:279–281PubMedCentralPubMedGoogle Scholar
  118. Opp D, Wafula B, Lim J, Huang E, Lo JC, Lo CM (2009) Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron 24:2625–2629PubMedCentralPubMedGoogle Scholar
  119. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New YorkGoogle Scholar
  120. Pajkossy T (1994) Impedance of rough capacitive electrodes. J Electroanal Chem 364:111–125Google Scholar
  121. Pang Z, Antonetti DA, Tarbell JM (2005) Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation. Ann Biomed Eng 33:1536–1545PubMedGoogle Scholar
  122. Parker JC, Stevens T, Randall J, Weber DS, King JA (2006) Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 291:L30–L37PubMedGoogle Scholar
  123. Patterson CE, Lum H (2001) Update on pulmonary edema: the role and regulation of endothelial barrier function. Endothelium 8:75–105PubMedGoogle Scholar
  124. Phelps JE, DePaola N (2000) Spatial variations in endothelial barrier function in disturbed flows in vitro. Am J Physiol Heart Circ Physiol 278:H469–H476PubMedGoogle Scholar
  125. Poelmann RE, Van der Heiden K, Gittenberger-de Groot A, Hierck BP (2008) Deciphering the endothelial shear stress sensor. Circulation 117:1124–1126PubMedGoogle Scholar
  126. Powell DW (1981) Barrier function of epithelia. Am J Physiol 241:G275–G288PubMedGoogle Scholar
  127. Predescu SA, Predescu DN, Malik AB (2007) Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293:L823–L842PubMedGoogle Scholar
  128. Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Roles of hemodynamic forces in vascular cell differentiation. Ann Biomed Eng 33:772–779PubMedGoogle Scholar
  129. Robelek R, Wegener J (2010) Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosens Bioelectron 25:1221–1224PubMedGoogle Scholar
  130. Rothermel A, Nieber M, Muller J, Wolf P, Schmidt M, Robitzki AA (2006) Real-time measurement of PMA-induced cellular alterations by microelectrode array-based impedance spectroscopy. Biotechniques 41:445–450PubMedGoogle Scholar
  131. Sakamoto N, Segawa K, Kanzaki M, Ohashi T, Sato M (2010) Role of p120-catenin in the morphological changes of endothelial cells exposed to fluid shear stress. Biochem Biophys Res Commun 398:426–432PubMedGoogle Scholar
  132. Salmon AH, Neal CR, Harper SJ (2009) New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr Opin Nephrol Hypertens 18:197–205PubMedGoogle Scholar
  133. Schnittler HJ (1998) Structural and functional aspects of intercellular junctions in vascular endothelium. Basic Res Cardiol 93 (Suppl 3):30–39PubMedGoogle Scholar
  134. Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D (1993) Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am J Physiol 265:C289–C298PubMedGoogle Scholar
  135. Schulzke JD, Bojarski C, Zeissig S, Heller F, Gitter AH, Fromm M (2006) Disrupted barrier function through epithelial cell apoptosis. Ann N Y Acad Sci 1072:288–299PubMedGoogle Scholar
  136. Scott CW, Peters MF (2010) Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discov Today 15:704–716PubMedGoogle Scholar
  137. Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, Galla HJ, Schnittler HJ (2000) Endothelial barrier function under laminar fluid shear stress. Lab Invest 80:1819–1831PubMedGoogle Scholar
  138. Seebach J, Donnert G, Kronstein R, Werth S, Wojciak-Stothard B, Falzarano D, Mrowietz C, Hell SW, Schnittler HJ (2007) Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc Res 75:596–607PubMedGoogle Scholar
  139. Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304:40–49PubMedGoogle Scholar
  140. Sill H, Butler C, Hollis T, Tarbell J (1992) Albumin permeability and electrical resistance as means of assessing endothelial monolayer integrity in vitro. J Tissue Cult Methods 14:253–257Google Scholar
  141. Sill HW, Chang YS, Artman JR, Frangos JA, Hollis TM, Tarbell JM (1995) Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am J Physiol 268:H535–H543PubMedGoogle Scholar
  142. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V (2007) Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6:258–268PubMedCentralPubMedGoogle Scholar
  143. Simionescu M, Simionescu N, Palade GE (1975) Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol 67:863–885PubMedGoogle Scholar
  144. Simionescu M, Simionescu N, Palade GE (1976) Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. J Cell Biol 68:705–723PubMedGoogle Scholar
  145. Steinem C, Janshoff A, Wegener J, Ulrich WP, Willenbrink W, Sieber M, Galla HJ (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12:787–808PubMedGoogle Scholar
  146. Stolpen AH, Guinan EC, Fiers W, Pober JS (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol 123:16–24PubMedCentralPubMedGoogle Scholar
  147. Stolwijk JA, Hartmann C, Balani P, Albermann S, Keese CR, Giaever I, Wegener J (2011) Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. Biosens Bioelectron 26:4720–4727PubMedGoogle Scholar
  148. Sun C, Wu MH, Yuan SY (2011) Nonmuscle myosin light-chain kinase deficiency attenuates atherosclerosis in apolipoprotein E-deficient mice via reduced endothelial barrier dysfunction and monocyte migration. Circulation 124:48–57PubMedCentralPubMedGoogle Scholar
  149. Sun C, Wu MH, Lee ES, Yuan SY (2012) A disintegrin and metalloproteinase 15 contributes to atherosclerosis by mediating endothelial barrier dysfunction via Src family kinase activity. Arterioscler Thromb Vasc Biol 32:2444–2451PubMedCentralPubMedGoogle Scholar
  150. Suttorp N, Hessz T, Seeger W, Wilke A, Koob R, Lutz F, Drenckhahn D (1988) Bacterial exotoxins and endothelial permeability for water and albumin in vitro. Am J Physiol 255:C368–C376PubMedGoogle Scholar
  151. Suttorp N, Fuchs T, Seeger W, Wilke A, Drenckhahn D (1989) Role of Ca2+ and Mg2+ for endothelial permeability of water and albumin in vitro. Lab Invest 61:183–191PubMedGoogle Scholar
  152. Takahashi M, Ishida T, Traub O, Corson MA, Berk BC (1997) Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress. J Vasc Res 34:212–219PubMedGoogle Scholar
  153. Tarbell JM (2010) Shear stress and the endothelial transport barrier. Cardiovasc Res 87:320–330PubMedCentralPubMedGoogle Scholar
  154. Tarbell JM, Shi ZD (2013) Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech Model Mechanobiol 12:111–121PubMedCentralPubMedGoogle Scholar
  155. Tarbell JM, Demaio L, Zaw MM (1999) Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress. J Appl Physiol 87:261–268PubMedGoogle Scholar
  156. Taylor SL, Wahl-Jensen V, Copeland AM, Jahrling PB, Schmaljohn CS (2013) Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system. PLoS Pathogens 9:e1003470PubMedCentralPubMedGoogle Scholar
  157. Terada LS (2008) What underlies endothelial shear sensing? The matrix, of course. Circ Res 103:562–564PubMedCentralPubMedGoogle Scholar
  158. Ting LH, Jahn JR, Jung JI, Shuman BR, Feghhi S, Han SJ, Rodriguez ML, Sniadecki NJ (2012) Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol 302:H2220–H2229PubMedCentralPubMedGoogle Scholar
  159. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685PubMedGoogle Scholar
  160. Tsukahara H, Noiri E, Jiang MZ, Hiraoka M, Mayumi M (2000) Role of nitric oxide in human pulmonary microvascular endothelial cell adhesion. Life Sci 67:1–11PubMedGoogle Scholar
  161. Turner MR (1992) Flows of liquid and electrical current through monolayers of cultured bovine arterial endothelium. J Physiol (Lond) 449:1–20PubMedCentralGoogle Scholar
  162. Ukropec JA, Hollinger MK, Woolkalis MJ (2002) Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp Cell Res 273:240–247PubMedGoogle Scholar
  163. Vandoorne K, Addadi Y, Neeman M (2010) Visualizing vascular permeability and lymphatic drainage using labeled serum albumin. Angiogenesis 13:75–85PubMedCentralPubMedGoogle Scholar
  164. Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200:617–627PubMedCentralPubMedGoogle Scholar
  165. Verkman AS (2006) Aquaporins in endothelia. Kidney Int 69:1120–1123PubMedGoogle Scholar
  166. Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28:223–232PubMedGoogle Scholar
  167. Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778:794–809PubMedGoogle Scholar
  168. Walsh TG, Murphy RP, Fitzpatrick P, Rochfort KD, Guinan AF, Murphy A, Cummins PM (2011) Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 226:3053–3063PubMedGoogle Scholar
  169. Warboys CM, Eric Berson R, Mann GE, Pearson JD, Weinberg PD (2010) Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules. Am J Physiol Heart Circ Physiol 298:H1850–H1856PubMedCentralPubMedGoogle Scholar
  170. Wedel-Parlow M von, Schrot S, Lemmen J, Treeratanapiboon L, Wegener J, Galla HJ (2011) Neutrophils cross the BBB primarily on transcellular pathways: an in vitro study. Brain Res 1367:62–76Google Scholar
  171. Wegener J, Sieber M, Galla HJ (1996) Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 32:151–170PubMedGoogle Scholar
  172. Wegener J, Zink S, Rosen P, Galla H (1999) Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells. Pflugers Arch 437:925–934PubMedGoogle Scholar
  173. Wegener J, Hakvoort A, Galla HJ (2000a) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124PubMedGoogle Scholar
  174. Wegener J, Keese CR, Giaever I (2000b) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166PubMedGoogle Scholar
  175. Wegener J, Abrams D, Willenbrink W, Galla HJ, Janshoff A (2004) Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques 37:590–597PubMedGoogle Scholar
  176. Wit C de (2010) Different pathways with distinct properties conduct dilations in the microcirculation in vivo. Cardiovasc Res 85:604–613Google Scholar
  177. Wojciak-Stothard B, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 161:429–439PubMedCentralPubMedGoogle Scholar
  178. Xu Q (2009) Disturbed flow-enhanced endothelial turnover in atherosclerosis. Trends Cardiovasc Med 19:191–195PubMedGoogle Scholar
  179. Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293:H1023–H1030PubMedGoogle Scholar
  180. Yin F, Watsky MA (2005) LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Invest Ophthalmol Vis Sci 46:1927–1933PubMedGoogle Scholar
  181. Yoshida Y, Okano M, Wang S, Kobayashi M, Kawasumi M, Hagiwara H, Mitsumata M (1995) Hemodynamic-force-induced difference of interendothelial junctional complexes. Ann N Y Acad Sci 748:104–120PubMedGoogle Scholar
  182. Young EF, Smilenov LB (2011) Impedance-based surveillance of transient permeability changes in coronary endothelial monolayers after exposure to ionizing radiation. Radiat Res 176:415–424PubMedGoogle Scholar
  183. Young EW, Watson MW, Srigunapalan S, Wheeler AR, Simmons CA (2010) Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection. Anal Chem 82:808–816PubMedGoogle Scholar
  184. Zink S, Rosen P, Sackmann B, Lemoine H (1993) Regulation of endothelial permeability by beta-adrenoceptor agonists: contribution of beta 1- and beta 2-adrenoceptors. Biochim Biophys Acta 1178:286–298PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany
  2. 2.Institute of Anatomy and Vascular BiologyWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations