Cell and Tissue Research

, Volume 356, Issue 1, pp 97–107 | Cite as

Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells

  • Wei Lu
  • Kun Ji
  • Jennifer Kirkham
  • Yu Yan
  • Aldo R. Boccaccini
  • Margaret Kellett
  • Yan Jin
  • Xuebin B. Yang
Regular Article

Abstract

Translational research in bone tissue engineering is essential for “bench to bedside” patient benefit. However, the ideal combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study is to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 wt% and 40 wt% of Bioglass particles with human adipose-derived stem cells (ADSCs) in vitro and in vivo. Live/dead fluorescent markers, confocal microscopy and scanning electron microscopy showed that PDLLA/Bioglass porous scaffolds supported ADSC attachment, growth and osteogenic differentiation, as confirmed by enhanced alkaline phosphatase (ALP) activity. Higher Bioglass content of the PDLLA foams increased ALP activity compared with the PDLLA only group. Extracellular matrix deposition after 8 weeks in the in vitro cultures was evident by Alcian blue/Sirius red staining. In vivo bone formation was assessed by using scaffold/ADSC constructs in diffusion chambers transplanted intraperitoneally into nude mice and recovered after 8 weeks. Histological and immunohistochemical assays indicated significant new bone formation in the 40 wt% and 5 wt% Bioglass constructs compared with the PDLLA only group. Thus, the combination of a well-developed biodegradable bioactive porous PDLLA/Bioglass composite scaffold with a high-potential stem cell source (human ADSCs) could be a promising approach for bone regeneration in a clinical setting.

Keywords

Bone tissue engineering Adipose-derived stem cells PDLLA/Bioglass® composite Biodegradable polymers In vivo 

Abbreviations

ADSCs

Adipose-derived stem cells

ALP

Alkaline phosphatase

CMFDA

5-Chloromethylfluorescein diacetate

COL-I

Collagen I

FBS

Fetal bovine serum

MSCs

Mesenchymal stem cells

NBF

Neutral buffered formalin

OCN

Osteocalcin

PBS

Phosphate-buffered saline

PDLLA

Poly(DL-lactic acid)

SEM

Scanning electron microscopy

αMEM

Alpha-modified minimal essential medium

3D

Three-dimensional

References

  1. Ahsan T, Nerem RM (2005) Bioengineered tissues: the science, the technology, and the industry. Orthod Craniofac Res 8:134–140PubMedCrossRefGoogle Scholar
  2. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681PubMedCrossRefGoogle Scholar
  3. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cells Mater 23:13–27Google Scholar
  4. Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR (2003) In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res A 67:1401–1411PubMedCrossRefGoogle Scholar
  5. Blaker JJ, Maquet V, Jerome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652PubMedCrossRefGoogle Scholar
  6. Boccaccini AR, Notingher I, Maquet V, Jerome R (2003) Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass particles for tissue engineering applications. J Mater Sci Mater Med 14:443–450PubMedCrossRefGoogle Scholar
  7. Bosetti M, Zanardi L, Hench L, Cannas M (2003) Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res A 64:189–195PubMedCrossRefGoogle Scholar
  8. Buma P, Schreurs W, Verdonschot N (2004) Skeletal tissue engineering—from in vitro studies to large animal models. Biomaterials 25:1487–1495PubMedCrossRefGoogle Scholar
  9. Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395PubMedCrossRefGoogle Scholar
  10. Cohen S, Bano MC, Cima LG, Allcock HR, Vacanti JP, Vacanti CA, Langer R (1993) Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater 13:3–10PubMedCrossRefGoogle Scholar
  11. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109PubMedCrossRefGoogle Scholar
  12. Eppley BL, Pietrzak WS, Blanton MW (2005) Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 16:981–989PubMedCrossRefGoogle Scholar
  13. Gabbay JS, Heller JB, Mitchell SA, Zuk PA, Spoon DB, Wasson KL, Jarrahy R, Benhaim P, Bradley JP (2006) Osteogenic potentiation of human adipose-derived stem cells in a 3-dimensional matrix. Ann Plast Surg 57:89–93PubMedCrossRefGoogle Scholar
  14. Gheysen G, Ducheyne P, Hench LL, Meester P de (1983) Bioglass composites: a potential material for dental application. Biomaterials 4:81–84Google Scholar
  15. Gough JE, Jones JR, Hench LL (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25:2039–2046PubMedCrossRefGoogle Scholar
  16. Green D, Walsh D, Yang XB, Mann S, Oreffo ROC (2004) Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. J Mater Chem 14:2206–2212CrossRefGoogle Scholar
  17. Hattar S, Berdal A, Asselin A, Loty S, Greenspan DC, Sautier JM (2002) Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses. Eur Cells Mater 4:61–69Google Scholar
  18. Hench LL (1988) Bioactive ceramics. Ann N Y Acad Sci 523:54–71PubMedCrossRefGoogle Scholar
  19. Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42PubMedCrossRefGoogle Scholar
  20. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017PubMedCrossRefGoogle Scholar
  21. Hench LL, Wilson J (1986) Biocompatibility of silicates for medical use. Ciba Found Symp 121:231–246PubMedGoogle Scholar
  22. Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM (2004) Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10:371–380PubMedCrossRefGoogle Scholar
  23. Hofmann A, Ritz U, Hessmann MH, Schmid C, Tresch A, Rompe JD, Meurer A, Rommens PM (2008) Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions. Bone 42:894–906PubMedCrossRefGoogle Scholar
  24. Horner E, Kirkham J, Yang X (2008) Animal models. In: Polak JM, Mantalaris S, Harding SE (eds) Advances in tissue engineering. Imperial College Press, London, pp 763–780CrossRefGoogle Scholar
  25. Horner EA, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang XB (2010) Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng Part B Rev 16:263–271PubMedCrossRefGoogle Scholar
  26. Howard D, Partridge K, Yang X, Clarke NM, Okubo Y, Bessho K, Howdle SM, Shakesheff KM, Oreffo RO (2002) Immunoselection and adenoviral genetic modulation of human osteoprogenitors: in vivo bone formation on PLA scaffold. Biochem Biophys Res Commun 299:208–215PubMedCrossRefGoogle Scholar
  27. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543PubMedCrossRefGoogle Scholar
  28. Invitrogen (2012) http://products.invitrogen.com/ivgn/product/R7788115. Access on 18th June
  29. Kokai LE, Rubin JP, Marra KG (2005) The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plast Reconstr Surg 116:1453–1460PubMedCrossRefGoogle Scholar
  30. Lalande C, Miraux S, Derkaoui SM, Mornet S, Bareille R, Fricain JC, Franconi JM, Le Visage C, Letourneur D, Amedee J, Bouzier-Sore AK (2011) Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering. Eur Cells Mater 21:341–354Google Scholar
  31. Lee JA, Parrett BM, Conejero JA, Laser J, Chen J, Kogon AJ, Nanda D, Grant RT, Breitbart AS (2003) Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg 50:610–617PubMedCrossRefGoogle Scholar
  32. Lee SJ, Kang SW, Do HJ, Han I, Shin DA, Kim JH, Lee SH (2010) Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 31:5652–5659PubMedCrossRefGoogle Scholar
  33. Liao S, Ngiam M, Chan CK, Ramakrishna S (2009) Fabrication of nano-hydroxyapatite/collagen/osteonectin composites for bone graft applications. Biomed Mater 4:025019PubMedCrossRefGoogle Scholar
  34. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486PubMedCrossRefGoogle Scholar
  35. Livingston T, Ducheyne P, Garino J (2002) In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res 62:1–13PubMedCrossRefGoogle Scholar
  36. Loty C, Sautier JM, Tan MT, Oboeuf M, Jallot E, Boulekbache H, Greenspan D, Forest N (2001) Bioactive glass stimulates in vitro osteoblast differentiation and creates a favorable template for bone tissue formation. J Bone Miner Res 16:231–239PubMedCrossRefGoogle Scholar
  37. Lu W, Yu J, Zhang Y, Ji K, Zhou Y, Li Y, Deng Z, Jin Y (2012) Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin. Cells Tissues Organs 195:197–206PubMedCrossRefGoogle Scholar
  38. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2003) Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass-filled polylactide foams. J Biomed Mater Res A 66:335–346PubMedCrossRefGoogle Scholar
  39. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2004) Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I. Preparation and in vitro characterisation. Biomaterials 25:4185–4194PubMedCrossRefGoogle Scholar
  40. Marot D, Knezevic M, Novakovic GV (2010) Bone tissue engineering with human stem cells. Stem Cell Res Ther 1:10PubMedCentralCrossRefGoogle Scholar
  41. Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468PubMedCrossRefGoogle Scholar
  42. McIntosh KR, Lopez MJ, Borneman JN, Spencer ND, Anderson PA, Gimble JM (2009) Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Eng Part A 15:2677–2686PubMedCentralPubMedCrossRefGoogle Scholar
  43. Mehrkens A, Saxer F, Guven S, Hoffmann W, Muller AM, Jakob M, Weber FE, Martin I, Scherberich A (2012) Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2. Eur Cells Mater 24:308–319Google Scholar
  44. Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A, Jahnen-Dechent W, Mastitskaya S, Perez-Bouza A, Rosewick S, Salber J, Woltje M, Zenke M (2008) Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 29:302–313PubMedCrossRefGoogle Scholar
  45. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S (2009) The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 45:4–16PubMedCrossRefGoogle Scholar
  46. Niemeyer P, Kornacker M, Mehlhorn A, Seckinger A, Vohrer J, Schmal H, Kasten P, Eckstein V, Sudkamp NP, Krause U (2007) Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng 13:111–121PubMedCrossRefGoogle Scholar
  47. Parker AM, Katz AJ (2006) Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther 6:567–578PubMedCrossRefGoogle Scholar
  48. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res 43:422–427PubMedCrossRefGoogle Scholar
  49. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129PubMedCrossRefGoogle Scholar
  50. Rada T, Reis RL, Gomes ME (2009) Novel method for the isolation of adipose stem cells (ASCs). J Tissue Eng Regen Med 3:158–159PubMedCrossRefGoogle Scholar
  51. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerjme R (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials 23:3871–3878PubMedCrossRefGoogle Scholar
  52. Saha S, Kirkham J, Wood D, Curran S, Yang X (2010) Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes. Biochem Biophys Res Commun 401:333–338PubMedCrossRefGoogle Scholar
  53. Saha S, Kirkham J, Wood D, Curran S, Yang XB (2011) Adult stem cells for articular cartilage tissue engineering. In: Li S, L’Heureus N, Elisseeff J (eds) Stem cell and tissue engineering. World Scientific Publishing, Singapore, pp 211–230CrossRefGoogle Scholar
  54. Saha S, Kirkham J, Wood D, Curran S, Yang XB (2013) Informing future cartilage repair strategies: a comparative study of three different human cell types for cartilage tissue engineering. Cell Tissue Res 352:495–507PubMedCentralPubMedCrossRefGoogle Scholar
  55. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells–basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827PubMedCrossRefGoogle Scholar
  56. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRefGoogle Scholar
  57. Stamboulis A, Hench LL, Boccaccini AR (2002) Mechanical properties of biodegradable polymer sutures coated with bioactive glass. J Mater Sci Mater Med 13:843–848PubMedCrossRefGoogle Scholar
  58. Sterodimas A, Faria J de, Nicaretta B, Pitanguy I (2010) Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg 63:1886–1892Google Scholar
  59. Tobitan M, Orbay H, Mizuno H (2011) Adipose-derived stem cells: current findings and future perspectives. Discov Med 11:160–170Google Scholar
  60. Tsigkou O, Hench LL, Boccaccini AR, Polak JM, Stevens MM (2007) Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements. J Biomed Mater Res A 80:837–851PubMedCrossRefGoogle Scholar
  61. Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021PubMedCrossRefGoogle Scholar
  62. Wang CZ, Chen SM, Chen CH, Wang CK, Wang GJ, Chang JK, Ho ML (2010) The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. Biomaterials 31:8674–8683PubMedCrossRefGoogle Scholar
  63. Wosnitza M, Hemmrich K, Groger A, Graber S, Pallua N (2007) Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation 75:12–23PubMedCrossRefGoogle Scholar
  64. Xynos ID, Hukkanen MV, Batten JJ, Buttery LD, Hench LL, Polak JM (2000) Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 67:321–329PubMedCrossRefGoogle Scholar
  65. Yang X, Whitaker M, Sebald W, Clarke N, Howdle S, Shakesheff K, Oreffo R (2004) Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng 10:1037–1045PubMedCrossRefGoogle Scholar
  66. Yang XB, Webb D, Blaker J, Boccaccini AR, Maquet V, Cooper C, Oreffo RO (2006) Evaluation of human bone marrow stromal cell growth on biodegradable polymer/bioglass composites. Biochem Biophys Res Commun 342:1098–1107PubMedCrossRefGoogle Scholar
  67. Young MF (2003) Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 14 (Suppl 3):S35–S42PubMedGoogle Scholar
  68. Zong C, Xue D, Yuan W, Wang W, Shen D, Tong X, Shi D, Liu L, Zheng Q, Gao C, Wang J (2010) Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds. Eur Cells Mater 20:109–120Google Scholar
  69. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar
  70. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wei Lu
    • 1
    • 2
    • 3
  • Kun Ji
    • 1
    • 4
  • Jennifer Kirkham
    • 5
    • 6
  • Yu Yan
    • 7
  • Aldo R. Boccaccini
    • 8
  • Margaret Kellett
    • 9
  • Yan Jin
    • 1
  • Xuebin B. Yang
    • 2
    • 6
  1. 1.Research and Development Center for Tissue Engineering, School of StomatologyThe Fourth Military Medical UniversityXi’anPeople’s Republic of China
  2. 2.Biomaterials and Tissue Engineering Group, Department of Oral Biology, Leeds Dental InstituteUniversity of LeedsLeedsUK
  3. 3.Department of DentistryThe 461 Hospital of PLAChangchunPeople’s Republic of China
  4. 4.Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi’anPeople’s Republic of China
  5. 5.Biomineralization Group, Leeds Dental InstituteUniversity of LeedsLeedsUK
  6. 6.NIHR Leeds Musculoskeletal Biomedical Research UnitChapel Allerton HospitalLeedsUK
  7. 7.Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE)University of Science and Technology BeijingBeijingPeople’s Republic of China
  8. 8.Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  9. 9.Department of Periodontology, Leeds Dental InstituteUniversity of LeedsLeedsUK

Personalised recommendations