Cell and Tissue Research

, Volume 356, Issue 1, pp 1–8 | Cite as

Rat choroidal pericytes as a target of the autonomic nervous system

  • Falk Schrödl
  • Andrea Trost
  • Clemens Strohmaier
  • Barbara Bogner
  • Christian Runge
  • Alexandra Kaser-Eichberger
  • Sebastien Couillard-Despres
  • Ludwig Aigner
  • Herbert A. Reitsamer
Regular Article

Abstract

Pericytes are contractile cells that surround blood vessels. When contracting, they change the diameter of the vessel and therefore influence blood flow homeostasis; however, mechanisms controlling pericyte action are less well understood. Since blood flow regulation per se is controlled by the autonomic nervous system, the latter might also be involved in pericyte action. Hence, rat choroidal pericytes were analyzed for such a connection by using appropriate markers. Rat choroidal wholemounts and sections were prepared for immunohistochemistry of the pericyte marker chondroitin-sulfate-proteoglycan (NG2) and the pan-neuronal marker PGP9.5 or of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP) and choline acetyl transferase (ChAT). Additionally, PGP9.5 and TH were analyzed in the choroid of DCX-dsRed2 transgenic rats, displaying red-fluorescent perivascular cells and serving as a putative model for studying pericyte function in vivo. Confocal laser-scanning microscopy revealed NG2-immunoreactive cells and processes surrounding the blood vessels. These NG2-positive cells were not co-localized with PGP9.5 but received close appositions of PGP9.5-, TH-, VIP- and ChAT-immunoreactive boutons and fibers. In the DCX-dsRed2 transgenic rat, PGP9.5 and TH were also densely apposed on the dsRed-positive cells adjacent to blood vessels. These cells were likewise immunoreactive for NG2, suggesting their pericyte identity. In addition to the innervation of vascular smooth muscle cells, the close relationship of PGP9.5 and further sympathetic (TH) and parasympathetic (VIP, ChAT) nerve fibers on NG2-positive pericytes indicated an additional target of the autonomic nervous system for choroidal blood flow regulation. Similar findings in the DCX-dsRed transgenic rat indicate the potential use of this animal model for in vivo experiments revealing the role of pericytes in blood flow regulation.

Keywords

Autonomic nervous system Blood flow regulation Innervation Eye Pericyte Rat 

References

  1. Alm A (1992) Ocular circulation. Mosby Year Book, St. LoiusGoogle Scholar
  2. Am S, Péault B, Mullins JJ (2013) Renal pericytes: multifunctional cells of the kidneys. Pflugers Arch 465:767–773CrossRefGoogle Scholar
  3. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215CrossRefPubMedGoogle Scholar
  4. Bellairs R, Harkness ML, Harkness RD (1975) The structure of the tapetum of the eye of the sheep. Cell Tissue Res 157:73–91CrossRefPubMedGoogle Scholar
  5. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10CrossRefPubMedGoogle Scholar
  6. Condren AB, Kumar A, Mettu P, Liang KJ, Zhao L, Tsai JY, Fariss RN, Wong WT (2013) Perivascular mural cells of the mouse choroid demonstrate morphological diversity that is correlated to vasoregulatory function. PLoS One 8:e53386PubMedCentralCrossRefPubMedGoogle Scholar
  7. Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006) Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci 24:1535–1545CrossRefPubMedGoogle Scholar
  8. Crawford C, Kennedy-Lydon T, Sprott C, Desai T, Sawbridge L, Munday J, Unwin RJ, Wildman SS, Peppiatt-Wildman CM (2012) An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron Physiol 120:17–31CrossRefGoogle Scholar
  9. Cuthbertson S, Jackson B, Toledo C, Fitzgerald ME, Shih YF, Zagvazdin Y, Reiner A (1997) Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons. J Comp Neurol 386:422–442CrossRefPubMedGoogle Scholar
  10. Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165PubMedCentralCrossRefPubMedGoogle Scholar
  11. De Stefano ME, Mugnaini E (1997) Fine structure of the choroidal coat of the avian eye. Vascularization, supporting tissue and innervation. Anat Embryol (Berl) 195:393–418CrossRefGoogle Scholar
  12. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969PubMedGoogle Scholar
  13. Dulmovits BM, Herman IM (2012) Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 44:1800–1812PubMedCentralCrossRefPubMedGoogle Scholar
  14. Elsas T, Edvinsson L, Sundler F, Uddman R (1994) Neuronal pathways to the rat conjunctiva revealed by retrograde tracing and immunocytochemistry. Exp Eye Res 58:117–126CrossRefPubMedGoogle Scholar
  15. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107:22290–22295PubMedCentralCrossRefPubMedGoogle Scholar
  16. Fligny C, Duffield JS (2013) Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction. Curr Opin Rheumatol 25:78–86CrossRefPubMedGoogle Scholar
  17. Flügel-Koch C, May CA, Lutjen-Drecoll E (1996) Presence of a contractile cell network in the human choroid. Ophthalmologica 210:296–302CrossRefPubMedGoogle Scholar
  18. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271CrossRefPubMedGoogle Scholar
  19. Haddad A, Laicine EM, Tripathi BJ, Tripathi RC (2001) An extensive system of extravascular smooth muscle cells exists in the choroid of the rabbit eye. Exp Eye Res 73:345–353CrossRefPubMedGoogle Scholar
  20. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2.pii:5Google Scholar
  21. Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–3112CrossRefPubMedGoogle Scholar
  22. Hirata Y, Nishiwaki H (2006) The choroidal circulation assessed by laser-targetedangiography. Prog Retin Eye Res 25:129–147CrossRefPubMedGoogle Scholar
  23. Itoh Y, Suzuki N (2012) Control of brain capillary blood flow. J Cereb Blood Flow Metab 32:1167–1176PubMedCentralCrossRefPubMedGoogle Scholar
  24. Joyce NC, DeCamilli P, Boyles J (1984) Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvasc Res 28:206–219CrossRefPubMedGoogle Scholar
  25. Karl C, Couillard-Despres S, Prang P, Munding M, Kilb W, Brigadski T, Plotz S, Mages W, Luhmann H, Winkler J, Bogdahn U, Aigner L (2005) Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 92:264–282CrossRefPubMedGoogle Scholar
  26. Kiel JW (1999) Modulation of choroidal autoregulation in the rabbit. Exp Eye Res 69:413–429CrossRefPubMedGoogle Scholar
  27. Kiel JW, Shepherd AP (1992) Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 33:2399–2410PubMedGoogle Scholar
  28. Klooster J, Beckers HJ, Ten Tusscher MP, Vrensen GF, van der Want JJ, Lamers WP (1996) Sympathetic innervation of the rat choroid: an autoradiographic tracing and immunohistochemical study. Ophthalmic Res 28:36–43CrossRefPubMedGoogle Scholar
  29. Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kutcher ME, Herman IM (2009) The pericyte: cellular regulator of microvascular blood flow. Microvasc Res 77:235–246PubMedCentralCrossRefPubMedGoogle Scholar
  31. Luiten PG, de Jong GI, Van der Zee EA, van Dijken H (1996) Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries. Brain Res 720:225–229CrossRefPubMedGoogle Scholar
  32. May CA (2003) Nonvascular smooth muscle alpha-actin positive cells in the choroid of higher primates. Curr Eye Res 27:1–6CrossRefPubMedGoogle Scholar
  33. May CA (2005) Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization. J Anat 207:381–390PubMedCentralCrossRefPubMedGoogle Scholar
  34. Meriney SD, Pilar G (1987) Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development. J Neurosci 7:3827–3839PubMedGoogle Scholar
  35. Miller AS, Coster DJ, Costa M, Furness JB (1983) Vasoactive intestinal polypeptide immunoreactive nerve fibres in the human eye. Aust J Ophthalmol 11:185–193CrossRefPubMedGoogle Scholar
  36. Neuhuber W, Schrödl F (2011) Autonomic control of the eye and the iris. Auton Neurosci 165:67–79CrossRefPubMedGoogle Scholar
  37. Nickla D, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nuzzi R, Guglielmone R, Grignolo FM (1995) Fluorescence histochemical demonstration of adrenergic terminations in the human choroid. Eur J Ophthalmol 5:251–258PubMedGoogle Scholar
  39. Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–249PubMedCentralCrossRefPubMedGoogle Scholar
  40. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704PubMedCentralCrossRefPubMedGoogle Scholar
  41. Poiseuille JLM (1840) Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres. CR Acad Sci 11:1041–1048Google Scholar
  42. Poukens V, Glasgow BJ, Demer JL (1998) Nonvascular contractile cells in sclera and choroid of humans and monkeys. Invest Ophthalmol Vis Sci 39:1765–1774PubMedGoogle Scholar
  43. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (2001) Neuroscience. The biogenic amines. Sinauer Associates, SunderlandGoogle Scholar
  44. Schönfelder U, Hofer A, Paul M, Funk RH (1998) In situ observation of living pericytes in rat retinal capillaries. Microvasc Res 56:22–29CrossRefPubMedGoogle Scholar
  45. Schrödl F (2009) Intrinsic choroidal neurons. In: Troger J, Kieselbach G, Bechrakis N (eds) Neuropeptides in the eye. Research Signpost, Trivandrum, pp 169–197Google Scholar
  46. Schrödl F, Tines R, Brehmer A, Neuhuber WL (2001) Intrinsic choroidal neurons in the duck eye receive sympathetic input: anatomical evidence for adrenergic modulation of nitrergic functions in the choroid. Cell Tissue Res 304:175–184CrossRefPubMedGoogle Scholar
  47. Schrödl F, De Stefano ME, Minvielle F, Brehmer A, Neuhuber WL (2005) Somatostatin immunoreactivity in quail pterygopalatine ganglion. J Anat 206:249–255PubMedCentralCrossRefPubMedGoogle Scholar
  48. Stallcup WB (2002) The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31:423–435CrossRefPubMedGoogle Scholar
  49. Stone RA, Tervo T, Tervo K, Tarkkanen A (1986) Vasoactive intestinal polypeptide-like immunoreactive nerves to the human eye. Acta Ophthalmol (Copenh) 64:12–18CrossRefGoogle Scholar
  50. Strohmaier C, Runge C, Schroedl F, Brandtner H, Bogner B, Grabner G, Reitsamer HA (2010) A rat model to study choroidal blood flow. ARVO May 2–6, 2010, Fort Lauderdale, abstract 5010Google Scholar
  51. Tabata S, Ozaki HS, Nakashima M, Uemura M, Iwamoto H (1998) Innervation of blood vessels in the rat incisor pulp: a scanning electron microscopic and immunoelectron microscopic study. Anat Rec 251:384–391CrossRefPubMedGoogle Scholar
  52. Troger J, Kieselbach G, Teuchner B, Kralinger M, Nguyen QA, Haas G, Yayan J, Gottinger W, Schmid E (2007) Peptidergic nerves in the eye, their source and potential pathophysiological relevance. Brain Res Rev 53:39–62CrossRefPubMedGoogle Scholar
  53. von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629CrossRefGoogle Scholar
  54. Wanjare M, Kusuma S, Gerecht S (2013) Perivascular cells in blood vessel regeneration. Biotechnol J 8:434–447PubMedCentralCrossRefPubMedGoogle Scholar
  55. Weichselbaum M, Everett AW, Sparrow MP (1996) Mapping the innervation of the bronchial tree in fetal and postnatal pig lung using antibodies to PGP 9.5 and SV2. Am J Respir Cell Mol Biol 15:703–710CrossRefPubMedGoogle Scholar
  56. Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG (2003) Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 284:H2083–H2090PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Falk Schrödl
    • 1
    • 2
  • Andrea Trost
    • 1
  • Clemens Strohmaier
    • 1
  • Barbara Bogner
    • 1
  • Christian Runge
    • 1
  • Alexandra Kaser-Eichberger
    • 1
  • Sebastien Couillard-Despres
    • 3
    • 4
  • Ludwig Aigner
    • 3
    • 4
  • Herbert A. Reitsamer
    • 1
  1. 1.Department of OphthalmologyParacelsus Medical University, SALKSalzburgAustria
  2. 2.Department of AnatomyParacelsus Medical UniversitySalzburgAustria
  3. 3.Department of Molecular and Regenerative MedicineParacelsus Medical UniversitySalzburgAustria
  4. 4.Spinal Cord Injury and Tissue Regeneration CenterParacelsus Medical UniversitySalzburgAustria

Personalised recommendations