Advertisement

Cell and Tissue Research

, Volume 355, Issue 2, pp 289–302 | Cite as

Sound-sensitive neurons innervate the ventro-lateral protocerebrum of the heliothine moth brain

  • Gerit PfuhlEmail author
  • Xin-Cheng Zhao
  • Elena Ian
  • Annemarie Surlykke
  • Bente G. Berg
Regular Article

Abstract

Many noctuid moth species perceive ultrasound via tympanic ears that are located at the metathorax. Whereas the neural processing of auditory information is well studied at the peripheral and first synaptic level, little is known about the features characterizing higher order sound-sensitive neurons in the moth brain. During intracellular recordings from the lateral protocerebrum in the brain of three noctuid moth species, Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta, we found an assembly of neurons responding to transient sound pulses of broad bandwidth. The majority of the auditory neurons ascended from the ventral cord and ramified densely within the anterior region of the ventro-lateral protocerebrum. The physiological and morphological characteristics of these auditory neurons were similar. We detected one additional sound-sensitive neuron, a brain interneuron with its soma positioned near the calyces of mushroom bodies and with numerous neuronal processes in the ventro-lateral protocerebrum. Mass-staining of ventral-cord neurons supported the assumption that the ventro-lateral region of the moth brain was the main target for the auditory projections ascending from the ventral cord.

Keywords

Auditory ventral-cord neurons Iontophoretic staining Brain targeted region Ultrasound Noctuid moths 

Notes

Acknowledgments

We thank Jan Tro, Yan Jiang and Tim Cato Netland (Department of Electronics and Telecommunications, NTNU) for assisting us with measurement of the acoustic signals. We also thank Dr. Pal Kvello and Dr. Bjarte Bye Løfaldli (Kavli Institute, NTNU) for assistance with the AMIRA reconstructions. We are grateful to Syngenta (Basel, Switzerland) and Dr. Jun-Feng Dong (Henan University of Science and Technology, Henan, China) for sending insect pupae.

Supplementary material

441_2013_1749_MOESM1_ESM.flv (2.8 mb)
Supplementary Movie S1 The movie shows the dense ramifications in the ventro-lateral protocerebrum of the vir2-neuron. (FLV 2889 kb)

References

  1. Agee HR, Orona E (1988) Studies of the neural basis of evasive flight in Heliothiszea (Lepidoptera: Noctuidae): organization of the tympanic nerves. Ann Entomol Soc Am 81:977–985Google Scholar
  2. Anton S, Evengaard K, Barrozo RB, Anderson P, Skals N (2011) Brief predator sound exposure elicits behavioral and neuronal long-term sensitization in the olfactory system of an insect. Proc Natl Acad Sci U S A 108:3401–3405PubMedCentralPubMedCrossRefGoogle Scholar
  3. Boyan GS (1983) Postembryonic development in the auditory system of the locust: anatomical and physiological characterisation of interneurones ascending to the brain. J Comp Physiol [A] 151:499–513CrossRefGoogle Scholar
  4. Boyan GS, Fullard JH (1986) Interneurons responding to sound in the tobacco budworm moth Heliothis virescens (Noctuidae): morphological and physiological characteristics. J Comp Physiol [A] 158:391–404CrossRefGoogle Scholar
  5. Boyan GS, Willis L, Fullard J (1990) Organization in the thoracic ganglia of noctuid moths. J Comp Neurol 295:248–267PubMedCrossRefGoogle Scholar
  6. Fullard JH (1998) The sensory coevolution of moths and bats. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 279–326CrossRefGoogle Scholar
  7. Gupta N, Stopfer M (2012) Functional analysis of a higher olfactory center, the lateral horn. J Neurosci 32:8138–8148PubMedCentralPubMedCrossRefGoogle Scholar
  8. Homberg U, Montague RA, Hildebrand JG (1988) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281PubMedCrossRefGoogle Scholar
  9. Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450PubMedCrossRefGoogle Scholar
  10. Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499:317–356PubMedCrossRefGoogle Scholar
  11. Kvello P, Løfaldli BB, Rybak J, Menzel R, Mustaparta H (2009) Digital three dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons. Front Syst Neurosci 13:1–14Google Scholar
  12. Lai JSY, Lo SJ, Dickson BJ, Chiang AS (2012) Auditory circuit in the Drosophila brain. Proc Natl Acad Sci U S A 109:2607–2612PubMedCentralPubMedCrossRefGoogle Scholar
  13. Minet J, Surlykke A (2003) Auditory and sound producing organs. In: Kristensen NP (ed) Lepidoptera, moths and butterflies, vol 2. Morphology and physiology. de Gruyter, Berlin, pp 289–323Google Scholar
  14. Nebeling B (2000) Morphology and physiology of auditory and vibratory ascending interneurons in bushcrickets. J Exp Zool 286:219–230PubMedCrossRefGoogle Scholar
  15. Olberg RM, Willis MA (1990) Pheromone-modulated optomotor response in male gypsy moths, Lymantria dispar L.: directionally selective visual interneurons in the ventral nerve cord. J Comp Physiol [A] 167:707–714CrossRefGoogle Scholar
  16. Ostrowski TD, Stumpner A (2010) Frequency processing at consecutive levels in the auditory system of bush crickets (Tettigoniidae). J Comp Neurol 518:3101–3116PubMedCrossRefGoogle Scholar
  17. Ostrowski TD, Stumpner A (2013) Processing of ultrasound in a bush cricket’s brain. Physiol Entomol 38:33–44CrossRefGoogle Scholar
  18. Paulk AC, Dacks AM, Phillips-Portillo J, Fellous JM, Gronenberg W (2009)Visual processing in the central bee brain.J Neurosci 29:9987–9999PubMedCentralPubMedCrossRefGoogle Scholar
  19. Roeder KD (1966) Auditory system of noctuid moths. Science 154:1515–1521PubMedCrossRefGoogle Scholar
  20. Roeder KD (1969) Acoustic interneurons in the brain of noctuid moths. J Insect Physiol 15:825–838PubMedCrossRefGoogle Scholar
  21. Seki Y, Aonuma H, Kanzaki R (2005) Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide-induced anti-cGMP immunocytochemistry.J Comp Neurol 481:340–351PubMedCrossRefGoogle Scholar
  22. Skals N, Andersen P, Kanneworff M, Löfstedt C, Surlykke A (2005) Her odors make him deaf: crossmodal modulation of olfaction and hearing in a male moth. J Exp Biol 208:595–601PubMedCrossRefGoogle Scholar
  23. Stumpner A, Molina J (2006) Diversity of intersegmental auditory neurons in a bush cricket. J Comp Physiol [A] 192:1359–1376CrossRefGoogle Scholar
  24. Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170PubMedCrossRefGoogle Scholar
  25. Surlykke A, Miller LA (1982) Central branches of three sensory axons from a moth ear (Agrotis segetum, Noctuidae). J Insect Physiol 28:357–364CrossRefGoogle Scholar
  26. Surlykke A, Filskov M, Fullard JH, Forrest E (1999) Auditory relationships to size in noctuid moths: bigger is better. Naturwissenschaften 86:238–241CrossRefGoogle Scholar
  27. Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Techn 47:380–400CrossRefGoogle Scholar
  28. Zhao XC, Berg BG (2009) Morphological and physiological characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the male oriental tobacco budworm, Helicoverpa assulta. Chem Senses 34:363–372PubMedCrossRefGoogle Scholar
  29. Zhao XC, Berg BG (2010) Arrangement of output information from the 3 macroglomerular units in the heliothine moth Helicoverpa assulta: morphological and physiological features of male-specific projection neurons. Chem Senses 35:511–521PubMedCrossRefGoogle Scholar
  30. Zhao XC, Pfuhl G, Surlykke AM, Tro J, Berg BG (2013) A multisensory centrifugal neuron in the olfactory pathway of heliothine moths. J Comp Neurol 512:152–168CrossRefGoogle Scholar
  31. Zorović M, Hedwig B (2011) Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. J Neurophysiol 105:2181–2194PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerit Pfuhl
    • 1
    Email author
  • Xin-Cheng Zhao
    • 1
    • 3
  • Elena Ian
    • 1
  • Annemarie Surlykke
    • 2
  • Bente G. Berg
    • 1
  1. 1.Department of Psychology/Neuroscience Unit, MTFSNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Institute of Biology, SDUUniversity of Southern DenmarkOdenseDenmark
  3. 3.Department of Entomology, College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina

Personalised recommendations