Cell and Tissue Research

, Volume 355, Issue 1, pp 81–88 | Cite as

Bone regeneration potential of allogeneic or autogeneic mesenchymal stem cells loaded onto cancellous bone granules in a rabbit radial defect model

  • Soo-Hwan Kang
  • Yang-Guk Chung
  • Il-Hoan Oh
  • Yong-Sik Kim
  • Ki-Ouk Min
  • Jun-Young Chung
Regular Article

Abstract

For developing a clinically effective bone regeneration strategy, we compare the bone regeneration potential of cultured allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) and of autologous BM-MSCs loaded onto allogeneic cancellous bone granule scaffolds. A critical-sized segmental bone defect was made at the mid-shaft of both radiuses in 19 New Zealand White rabbits (NWRs). In the experimental group, allogeneic BM-MSCs loaded onto small-sized allogeneic cancellous bone granules (300~700 um in diameter) were implanted in one side of a bone defect. In the control group, autologous BM-MSCs loaded onto allogeneic cancellous granules were grafted in the other side. Bone regeneration was assessed by radiographic evaluation at 4, 8, 12 and 16 weeks post-implantation and by micro-computed tomography (micro-CT) and histological evaluation at 8 and 16 weeks. The experimental groups showed lower bone quantity indices (BQIs) than the control groups at 12 and 16 weeks (p < 0.05), although no significant difference was observed at 4 and 8 weeks (p > 0.05). Micro-CT analysis revealed that both groups had similar mean total bone volume and other parameters including trabecular thickness, number and separation at either 8 or 16 weeks. Only bone surface area revealed less area in the experimental group at 16 weeks. Histological evaluation of 8-week and 16-week specimens showed similar biologic processes of new bone formation and maturation. There was no inflammatory reaction indicating an adverse immune response in both allogeneic and autologous MSC groups. In conclusion, allogeneic BM-MSCs loaded onto allogeneic cancellous bone granules had comparable bone regeneration potential to autologous BM-MSCs in a rabbit radial defect model.

Keywords

Bone regeneration Allogeneic MSC Autologous MSC Allogeneic bone granule Micro-CT 

Notes

Acknowledgments

The authors wish to express their gratitude to the department of radiology for their help in radiographic evaluations. We also thank Je-Sun Chang for his help in micro-CT image analysis. Fundings for this study were kindly provided by Seoul St. Mary’s Clinical Medicine Research Program of year 2012 through the Catholic University of Korea and Il-dong Pharmaceutical Co., Ltd., Seoul, Korea.

Competing interests

The authors declare that they have no competing interests.

References

  1. Aho AJ, Ekfors T, Dean PB, Aro HT, Ahonen A and Nikkanen V (1994) Incorporation and clinical results of large allografts of the extremities and pelvis. Clin Orthop Relat Res 200–213Google Scholar
  2. Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85-A:1927–1935PubMedGoogle Scholar
  3. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48PubMedCrossRefGoogle Scholar
  4. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996PubMedGoogle Scholar
  5. Chao PH, Grayson W, Vunjak-Novakovic G (2007) Engineering cartilage and bone using human mesenchymal stem cells. J Orthop Sci 12:398–404PubMedCentralPubMedCrossRefGoogle Scholar
  6. Coathup MJ, Kalia P, Konan S, Mirza K, Blunn GW (2013) A comparison of allogeneic and autologous mesenchymal stromal cells and osteoprogenitor cells in augmenting bone formation around massive bone tumor prostheses. J Biomed Mater Res A 101:2210–2218PubMedCrossRefGoogle Scholar
  7. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedCrossRefGoogle Scholar
  8. Ehrler DM, Vaccaro AR (2000) The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res 371:38–45PubMedCrossRefGoogle Scholar
  9. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106:4057–4065PubMedCrossRefGoogle Scholar
  10. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to Autogenous Bone Graft: Efficacy and Indications. J Am Acad Orthop Surg 3:1–8PubMedGoogle Scholar
  11. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRefGoogle Scholar
  12. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272PubMedCrossRefGoogle Scholar
  13. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134PubMedCrossRefGoogle Scholar
  14. Kim SJ, Chung YG, Lee YK, Oh IW, Kim YS, Moon YS (2012) Comparison of the osteogenic potentials of autologous cultured osteoblasts and mesenchymal stem cells loaded onto allogeneic cancellous bone granules. Cell Tissue Res 347:303–310PubMedCrossRefGoogle Scholar
  15. Lee SU, Chung YG, Oh IH, Kim JM, Kim YS, Lee YG, Baek MH, Kim SE (2010) Bone regeneration using mesenchymal stem cells loaded onto allogeneic cancellous bone granules. Tissue Eng Regen Med 7:401–409Google Scholar
  16. Li ZH, Liao W, Cui XL, Zhao Q, Liu M, Chen YH, Liu TS, Liu NL, Wang F, Yi Y, Shao NS (2011) Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 8:74–83PubMedCentralPubMedCrossRefGoogle Scholar
  17. Lucarelli E, Donati D, Cenacchi A, Fornasari PM (2004) Bone reconstruction of large defects using bone marrow derived autologous stem cells. Transfus Apher Sci 30:169–174PubMedCrossRefGoogle Scholar
  18. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428PubMedCrossRefGoogle Scholar
  19. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  20. Patel SA, Sherman L, Munoz J, Rameshwar P (2008) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 56:1–8CrossRefGoogle Scholar
  21. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  22. Planka L, Gal P, Kecova H, Klima J, Hlucilova J, Filova E, Amler E, Krupa P, Kren L, Srnec R, Urbanova L, Lorenzova J, Necas A (2008) Allogeneic and autogenous transplantations of MSCs in treatment of the physeal bone bridge in rabbits. BMC Biotechnol 8:70PubMedCentralPubMedCrossRefGoogle Scholar
  23. Poncelet AJ, Vercruysse J, Saliez A, Gianello P (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83:783–790PubMedCrossRefGoogle Scholar
  24. Pruss A, Perka C, Degenhardt P, Maronna U, Buttner-Janz K, Paul B, Muller K, Klumpp C, Bruck JC, Von Versen R (2002) Clinical efficacy and compatibility of allogeneic avital tissue transplants sterilized with a peracetic acid/ethanol mixture. Cell Tissue Bank 3:235–243PubMedCrossRefGoogle Scholar
  25. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386PubMedCrossRefGoogle Scholar
  26. Seebach C, Schultheiss J, Wilhelm K, Frank J, Henrich D (2010) Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury 41:731–738PubMedCrossRefGoogle Scholar
  27. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435PubMedCrossRefGoogle Scholar
  28. Udehiya RK, Amarpal AHP, Kinjavdekar P, Pawde AM, Singh R, Taru Sharma G (2013) Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Res Vet Sci 94:743–752PubMedCrossRefGoogle Scholar
  29. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195PubMedCrossRefGoogle Scholar
  30. Zomorodian E, Baghaban Eslaminejad M (2012) Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int. doi: 10.1155/2012/980353 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Soo-Hwan Kang
    • 1
  • Yang-Guk Chung
    • 1
    • 4
  • Il-Hoan Oh
    • 3
  • Yong-Sik Kim
    • 1
  • Ki-Ouk Min
    • 2
  • Jun-Young Chung
    • 1
  1. 1.Department of Orthopedic Surgery, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  2. 2.Department of Clinical Pathology, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  3. 3.Catholic High-Performance Cell Therapy Center, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  4. 4.Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea

Personalised recommendations