Advertisement

Cell and Tissue Research

, Volume 354, Issue 3, pp 891–896 | Cite as

Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6

  • Xiongxiong Lu
  • Yuan Fang
  • Zhengting Wang
  • Junjie Xie
  • Qian Zhan
  • Xiaxing Deng
  • Hao Chen
  • Jiabin Jin
  • Chenghong Peng
  • Hongwei Li
  • Baiyong Shen
Regular Article

Abstract

Recent studies have revealed that long non-coding RNAs (lncRNAs) play important roles in cancer biology and that lncRNA gas5 (growth arrest-specific 5) regulates breast cancer cell growth. However, the role of gas5 in pancreatic cancer progression remains largely unknown. In the current study, we assay the expression level of gas5 in pancreatic cancer tissues and define the role of gas5 in the regulation of pancreatic cancer cell proliferation. We verify that the expression level of gas5 is significantly decreased in pancreatic cancer tissues compared with normal control. Overexpression of gas5 in pancreatic cancer cells inhibits cell proliferation, whereas gas5 inhibition induces a significant decrease in G0/G1 phase and an increase in S phase. We further demonstrate that gas5 negatively regulates CDK6 (cyclin-dependent kinase 6) expression in vitro and in vivo. More importantly, knockdown of CDK6 partially abrogates gas5-siRNA-induced cell proliferation. These data suggest an important role of gas5 in the molecular etiology of pancreatic cancer and implicate the potential application of gas5 in pancreatic cancer therapy.

Keywords

Gas5 CDK6 Pancreatic cancer Cell cycle lncRNA 

Notes

Conflicts of interest

None

References

  1. Chen Z, Chen LY, Dai HY, Wang P, Gao S, Wang K (2012) miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J Cell Biochem 113:3229–3235PubMedCrossRefGoogle Scholar
  2. Chen ZK, Lin LW, Weng XH, Xue ES, Lin YH (2009) Interstitial chemotherapy with ricin-loaded thermosensitive hydrogel in pancreatic cancer xenograft. Hepatobiliary Pancreat Dis Int 8:418–423PubMedGoogle Scholar
  3. Coccia EM, Cicala C, Charlesworth A, Ciccarelli C, Rossi GB, Philipson L, Sorrentino V (1992) Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentiation, and development. Mol Cell Biol 12:3514–3521PubMedGoogle Scholar
  4. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38PubMedCrossRefGoogle Scholar
  5. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedCrossRefGoogle Scholar
  6. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231PubMedCrossRefGoogle Scholar
  7. Kapranov P, Willingham AT, Gingeras TR (2007) Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 8:413–423PubMedCrossRefGoogle Scholar
  8. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8PubMedCrossRefGoogle Scholar
  9. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M (2011) Long non-coding RNA HOTAIR regulates Polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326Google Scholar
  10. Lebedeva IV, Sarkar D, Su ZZ, Gopalkrishnan RV, Athar M, Randolph A, Valerie K, Dent P, Fisher PB (2006) Molecular target-based therapy of pancreatic cancer. Cancer Res 66:2403–2413PubMedCrossRefGoogle Scholar
  11. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013a) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333:213–221PubMedCrossRefGoogle Scholar
  12. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013b) Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J 280:1709–1716PubMedCrossRefGoogle Scholar
  13. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159PubMedCrossRefGoogle Scholar
  14. Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT (2008) Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci 121:939–946PubMedCrossRefGoogle Scholar
  15. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208PubMedCrossRefGoogle Scholar
  16. Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103PubMedCrossRefGoogle Scholar
  17. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568PubMedCrossRefGoogle Scholar
  18. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139PubMedCrossRefGoogle Scholar
  19. Tani H, Torimura M, Akimitsu N (2013) The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS ONE 8:e55684PubMedCrossRefGoogle Scholar
  20. Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF (2005) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23:1383–1390PubMedCrossRefGoogle Scholar
  21. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504PubMedCrossRefGoogle Scholar
  22. Woo CJ, Kingston RE (2007) HOTAIR lifts noncoding RNAs to new levels. Cell 129:1257–1259PubMedCrossRefGoogle Scholar
  23. Yamaguchi H, Kojima T, Ito T, Kimura Y, Imamura M, Son S, Koizumi J, Murata M, Nagayama M, Nobuoka T, Tanaka S, Hirata K, Sawada N (2010) Transcriptional control of tight junction proteins via a protein kinase C signal pathway in human telomerase reverse transcriptase-transfected human pancreatic duct epithelial cells. Am J Pathol 177:698–712PubMedCrossRefGoogle Scholar
  24. Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G (2012) Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 279:3159–3165PubMedCrossRefGoogle Scholar
  25. Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, Liu Y, Qiu F (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 9:407–411PubMedCrossRefGoogle Scholar
  26. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358PubMedCrossRefGoogle Scholar
  27. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48:R45–R53PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiongxiong Lu
    • 1
  • Yuan Fang
    • 1
  • Zhengting Wang
    • 1
  • Junjie Xie
    • 1
  • Qian Zhan
    • 1
  • Xiaxing Deng
    • 1
  • Hao Chen
    • 1
  • Jiabin Jin
    • 1
  • Chenghong Peng
    • 1
  • Hongwei Li
    • 1
  • Baiyong Shen
    • 1
  1. 1.Department of General Surgery, RuiJin HospitalShanghai Jiaotong University School of MedicineShangHaiChina

Personalised recommendations