Cell and Tissue Research

, Volume 354, Issue 1, pp 27–39 | Cite as

Brain microdialysis and its applications in experimental neurochemistry

  • Elmira Anderzhanova
  • Carsten T. WotjakEmail author


Microdialysis is one of the most powerful neurochemistry techniques, which allows the monitoring of changes in the extracellular content of endogenous and exogenous substances in the brain of living animals. The strength as well as wide applicability of this experimental approach are based on the bulk theory of brain neurotransmission. This methodological review introduces basic principles of chemical neurotransmission and emphasizes the difference in neurotransmission types. Clear understanding of their significance and degree of engagement in regulation of physiological processes is an ultimate prerequisite not only for choosing an appropriate method of monitoring for interneuronal communication via chemical messengers but also for accurate data interpretation. The focus on the processes of synthesis/metabolism, receptor interaction/ neuronal signaling or the behavioral relevance of neurochemical events sculpts the experiment design. Brain microdialysis is an important method for examining changes in the content of any substances, irrespective of their origin, in living animals. This article compares contemporary approaches and techniques that are used for monitoring neurotransmission (including in vivo brain microdialysis, voltammetric methods, etc). We highlight practical aspects of microdialysis experiments in particular to those researchers who are seeking to increase the repertoire of their experimental techniques with brain microdialysis.


Microdialysis Neurochemistry techniques Neurotransmission Bulk theory Brain 


  1. Anderzhanova E, Covasa M, Hajnal A (2007) Altered basal and stimulated accumbens dopamine release in obese OLETF rats as a function of age and diabetic status. Am J Physiol Regul Integr Comp Physiol 293:R603–11PubMedCrossRefGoogle Scholar
  2. Anderzhanova EA, Bächli H, Buneeva OA, Narkevich VB, Medvedev AE, Thoeringer CK, Wotjak CT, Kudrin VS (2013) Strain differences in profiles of dopaminergic neurotransmission in the prefrontal cortex of the BALB/C vs. C57Bl/6 mice: Consequences of stress and afobazole. Eur J Pharmacol 708:95–104PubMedCrossRefGoogle Scholar
  3. Bito L, Davson H, Levin E, Murray M, Snider N (1966) The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 13:1057–1067Google Scholar
  4. Borland LM, Shi G, Yang H, Michael AC (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146:149–158PubMedCrossRefGoogle Scholar
  5. Bungay PM, Morrison PF, Dedrick RL, Chefer VI, Zapata A (2007) Principles of quantitative microdialysis. In: Westerink BHC, Cremers TIFH (eds) Handbook of Microdialysis: Methods, Applications and Perspectives, vol 16, Handbook of Behavioral and Neuroscience. Academic/Elsevier, Amsterdam, pp 131–167CrossRefGoogle Scholar
  6. Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661PubMedCrossRefGoogle Scholar
  7. Chaurasia CS, Müller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange EC, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL Jr, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BW, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H (2007) AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 24:1014–25PubMedCrossRefGoogle Scholar
  8. Chefer VI, Shippenberg TS (2002) Changes in basal and cocaine-evoked extracellular dopamine uptake and release in the rat nucleus accumbens during early abstinence from cocaine: quantitative determination under transient conditions. Neuroscience 112:907–919PubMedCrossRefGoogle Scholar
  9. Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. Curr Protoc Neurosci Apr, chapter 7:unit 7.1Google Scholar
  10. Chefer VI, Zapata A, Shippenberg TS, Bungay PM (2006) Quantitative no-net-flux microdialysis permits detection of increases and decreases in dopamine uptake in mouse nucleus accumbens. J Neurosci Methods 155:187–193PubMedCrossRefGoogle Scholar
  11. Chen KC (2005) Evidence on extracellular dopamine level in rat striatum: implications for the validity of quantitative microdialysis. J Neurochem 92:46–58PubMedCrossRefGoogle Scholar
  12. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226PubMedCrossRefGoogle Scholar
  13. Cremers TI, de Vries MG, Huinink KD, Van Loon JP, v. d. Hart M, Ebert B, Westerink BH, De Lange EC (2009) Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the MetaQuant technique. J Neurosci Methods 178:249–254PubMedCrossRefGoogle Scholar
  14. Dale N, Hatz S, Tian F, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 23:420–428PubMedCrossRefGoogle Scholar
  15. Damsma G, Westerink BH, Horn AS (1985) A simple, sensitive, and economic assay for choline and acetylcholine using HPLC, an enzyme reactor, and an electrochemical detector. J Neurochem 45:1649–1652PubMedCrossRefGoogle Scholar
  16. Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, Van der Schyf CJ (2011) In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov 6:109–127PubMedCrossRefGoogle Scholar
  17. De Carlos JA, Borrell J (2007) A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience. Brain Res Rev 55:8–16PubMedCrossRefGoogle Scholar
  18. Drew KL, O'Connor WT, Kehr J, Ungerstedt U (1989) Characterization of gamma-aminobutyric acid and dopamine overflow following acute implantation of a microdialysis probe. Life Sci 45:1307–1317PubMedCrossRefGoogle Scholar
  19. de Lange EC, Bouw MR, Mandema JW, Danhof M, de Boer AG, Breimer DD (1995) Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br J Pharmacol 116:2538–2544PubMedCrossRefGoogle Scholar
  20. Fekkes D (1996) State-of-the-art of high-performance liquid chromatographic analysis of amino acids in physiological samples. J Chromatogr B Biomed Appl 682:3–22PubMedCrossRefGoogle Scholar
  21. Fick A (1855) On liquid diffusion. Philos Mag J Sci 10:31–39Google Scholar
  22. Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, Leo G, Staines W, Guidolin D, Kehr J, Genedani S, Belluardo N, Agnati LF (2007) From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev 55:17–54PubMedCrossRefGoogle Scholar
  23. Fuxe K, Dahlström AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90:82–100PubMedCrossRefGoogle Scholar
  24. Gainetdinov RR, Sotnikova TD, Grekhova TV, Rayevsky KS (1997) Effects of a psychostimulant drug sydnocarb on rat brain dopaminergic transmission in vivo. Eur J Pharmacol 340:53–58PubMedCrossRefGoogle Scholar
  25. González RR, Fernández RF, Vidal JL, Frenich AG, Pérez ML (2011) Development and validation of an ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J Neurosci Methods 198:187–194PubMedCrossRefGoogle Scholar
  26. Guihen E, O'Connor WT (2010) Capillary and microchip electrophoresis in microdialysis: recent applications. Electrophoresis 31:55–64PubMedCrossRefGoogle Scholar
  27. Guihen E, O'Connor WT (2009) Current separation and detection methods in microdialysis the drive towards sensitivity and speed. Electrophoresis 30:2062–2075PubMedCrossRefGoogle Scholar
  28. Heien ML, Wightman RM (2006) Phasic dopamine signaling during behavior, reward, and disease states. CNS Neurol Disord Drug Targets 5:99–108PubMedCrossRefGoogle Scholar
  29. Herrera-Marschitz M, Goiny M, You ZB, Meana JJ, Pettersson E, Rodriguez-Puertas R, Xu ZQ, Terenius L, Hökfelt T, Ungerstedt U (1997) On the release of glutamate and aspartate in the basal ganglia of the rat: interactions with monoamines and neuropeptides. Neurosci Biobehav Rev 21:489–495PubMedCrossRefGoogle Scholar
  30. Herrera-Marschitz M, You ZB, Goiny M, Meana JJ, Silveira R, Godukhin OV, Chen Y, Espinoza S, Pettersson E, Loidl CF, Lubec G, Andersson K, Nylander I, Terenius L, Ungerstedt U (1996) On the origin of extracellular glutamate levels monitored in the basal ganglia of the rat by in vivo microdialysis. J Neurochem 66:1726–1735PubMedCrossRefGoogle Scholar
  31. Hershey ND, Kennedy RT (2013) In Vivo Calibration of Microdialysis Using Infusion of Stable-Isotope Labeled Neurotransmitters. ACS Chem Neurosci PMID: 23374073Google Scholar
  32. Höistad M, Chen KC, Nicholson C, Fuxe K, Kehr J (2002) Quantitative dual-probe microdialysis: evaluation of [3H]mannitol diffusion in agar and rat striatum. J Neurochem 81:80–93PubMedCrossRefGoogle Scholar
  33. Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta 1662:113–137PubMedCrossRefGoogle Scholar
  34. Howell LL, Wilcox KM (2002) Functional imaging and neurochemical correlates of stimulant self-administration in primates. Psychopharmacology (Berl) 163:352–361CrossRefGoogle Scholar
  35. John CE, Jones SR (2007) Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake inmouse caudate-putamen and substantia nigra slices. Neuropharmacology 52:1596–1605PubMedCrossRefGoogle Scholar
  36. Justice JB Jr (1993) Quantitative microdialysis of neurotransmitters. J Neurosci Methods 48:263–276PubMedCrossRefGoogle Scholar
  37. Imperato A, Di Chiara G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci 4:966–977PubMedGoogle Scholar
  38. Imperato A, Di Chiara G (1988) Effects of locally applied D-1 and D-2 receptor agonists and antagonists studied with brain dialysis. Eur J Pharmacol 156:385–393PubMedCrossRefGoogle Scholar
  39. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  40. Kendrick KM (1989) Use of microdialysis in neuroendocrinology. Methods Enzymol 168:182–205PubMedCrossRefGoogle Scholar
  41. LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177PubMedCrossRefGoogle Scholar
  42. Leng G, Ludwig M (2008) Neurotransmitters and peptides: whispered secrets and public announcements. J Physiol 586(Pt 23):5625–5632PubMedCrossRefGoogle Scholar
  43. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29:444–453PubMedCrossRefGoogle Scholar
  44. Morari M, O'Connor WT, Ungerstedt U, Fuxe K (1993) N-methyl-D-aspartic acid differentially regulates extracellular dopamine, GABA, and glutamate levels in the dorsolateral neostriatum of the halothane-anesthetized rat: an in vivo microdialysis study. J Neurochem 60:1884–1893PubMedCrossRefGoogle Scholar
  45. Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28:11221–11230PubMedCrossRefGoogle Scholar
  46. Morrison PF, Bunday PM, Hsiao JK, Mefford IN, Dykstra KH, Dedrick RL (1991) Quantitative microdialysis. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the neuroscience. Elsevier, New York, pp 47–80CrossRefGoogle Scholar
  47. Navarrete M, Araque A (2011) Basal synaptic transmission: astrocytes rule! Cell 146:675–677PubMedCrossRefGoogle Scholar
  48. O'Connor WT, Tanganelli S, Ungerstedt U, Fuxe K (1992) The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat: an in vivo microdialysis study. Brain Res 573:209–216PubMedCrossRefGoogle Scholar
  49. Omiatek DM, Bressler AJ, Cans AS, Andrews AM, Heien ML, Ewing AG (2013) The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci Rep 3:1447. doi: 10.1038/srep01447 PubMedCrossRefGoogle Scholar
  50. Osborne PG, O'Connor WT, Kehr J, Ungerstedt U (1991) In vivo characterisation of extracellular dopamine, GABA and acetylcholine from the dorsolateral striatum of awake freely moving rats by chronic microdialysis. J Neurosci Methods 37:93–102PubMedCrossRefGoogle Scholar
  51. Parsons LH, Justice JB Jr (1992) Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J Neurochem 58:212–218PubMedCrossRefGoogle Scholar
  52. Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE (2013) Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta 1828:134–146PubMedCrossRefGoogle Scholar
  53. Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313PubMedCrossRefGoogle Scholar
  54. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Сhem Rev 108:2554–2584CrossRefGoogle Scholar
  55. Robinson TE, Justice JB Jr (1991) Microdialysis in the neurosciences. Elsevier, AmsterdamGoogle Scholar
  56. Santello M, Calì C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331PubMedCrossRefGoogle Scholar
  57. Sharp T, Zetterström T, Series HG, Carlsson A, Grahame-Smith DG, Ungerstedt U (1987) HPLC-EC analysis of catechols and indoles in rat brain dialysates. Life Sci 41:869–872PubMedCrossRefGoogle Scholar
  58. Sharp T, Zetterström T, Ungerstedt U (1986) An in vivo study of dopamine release and metabolism in rat brain regions using intracerebral dialysis. J Neurochem 47:113–122PubMedCrossRefGoogle Scholar
  59. Scheller D, Kolb J (1991) The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J Neurosci Methods 141:269–272Google Scholar
  60. Sjöberg P, Olofsson IM, Lundqvist T (1992) Validation of different microdialysis methods for the determination of unbound steady-state concentrations of theophylline in blood and brain tissue. Pharm Res 9:1592–1598PubMedCrossRefGoogle Scholar
  61. Smith AD, Justice JB (1994) The effect of inhibition of synthesis, release, metabolism and uptake on the microdialysis extraction fraction of dopamine. J Neurosci Methods 54:75–82PubMedCrossRefGoogle Scholar
  62. Smith S, Sharp T (1994) Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde-sulphite derivatization and high-performance liquid chromatography with electrochemical detection. J Chromatogr 652:228–233PubMedGoogle Scholar
  63. Sotelo C (2011) Camillo Golgi and Santiago Ramon y Cajal: the anatomical organization of the cortex of the cerebellum. Can the neuron doctrine still support our actual knowledge on the cerebellar structural arrangement? Brain Res Rev 66:16–34PubMedCrossRefGoogle Scholar
  64. Stenken J (1999) Methods and issues in microdialysis calibration. Analyt Chem Acta 379:337–358CrossRefGoogle Scholar
  65. Shulman RG, Hyder F, Rothman DL (2002) Biophysical basis of brain activity: implications for neuroimaging. Q Rev Biophys 35:287–325PubMedCrossRefGoogle Scholar
  66. Sulzer D, Pothos EN (2000) Regulation of quantal size by presynaptic mechanisms. Rev Neurosci 11:159–212PubMedGoogle Scholar
  67. Timmerman W, Westerink BH (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27:242–261PubMedCrossRefGoogle Scholar
  68. van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90:135–147PubMedCrossRefGoogle Scholar
  69. Vizi ES, Fekete A, Karoly R, Mike A (2010) Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 160:785–809PubMedCrossRefGoogle Scholar
  70. Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange EC (2012) Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J 14:543–553PubMedCrossRefGoogle Scholar
  71. Westerink BH (1982) Correlation between high-performance liquid chromatography and automated fluorimetric methods for the determination of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid in nervous tissue and cerebrospinal fluid. J Chromatogr 233:69–77PubMedGoogle Scholar
  72. Westerink BH (1995) Brain microdialysis and its application for the study of animal behavior. Behav Brain Res 70:103–124PubMedCrossRefGoogle Scholar
  73. Westerink BH (2000) Analysis of biogenic amines in microdialysates of the brain. J Chromatogr B: Biomed Sci Appl 747:21–32CrossRefGoogle Scholar
  74. Westerink BHC, Hofsteede HM, Damsma G, de Vries JB (1988) The significance of extracellular calcium for the release of dopamine, acetylcholine and amino acids in conscious rats, evaluated by brain microdialysis. Naunyn-Schmiedeberg's Arch Pharmacol 337:373–378CrossRefGoogle Scholar
  75. Westerink BHC, Justice JB Jr (1991) Microdialysis compared with other in vivo release models. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the Neurosciences. Elsevier, New York, pp 23–43CrossRefGoogle Scholar
  76. Westerink BHC, Timmerman W (1999) Do neurotransmitters sampled by brain microdialysis reflect functional release? Analut Chem Acta 379:263–274CrossRefGoogle Scholar
  77. Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with "reward". J Neurochem 82:721–735PubMedCrossRefGoogle Scholar
  78. Wotjak CT, Ganster J, Kohl G, Holsboer F, Landgraf R, Engelmann M (1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85:1209–1222PubMedCrossRefGoogle Scholar
  79. Wotjak CT, Landgraf R, Engelmann M (2008) Listening to neuropeptides by microdialysis: echoes and new sounds? Pharmacol Biochem Behav 90:125–134PubMedCrossRefGoogle Scholar
  80. Yamamoto BK, Pehek EA (1990) A neurochemical heterogeneity of the rat striatum as measured by in vivo electrochemistry and microdialysis. Brain Res 506:236–242PubMedCrossRefGoogle Scholar
  81. Yang H, Michael AC (2007) In vivo fast-scan cyclic voltammetry of dopamine near microdialysis probes. In: Michael AC, Borland LM (eds) Electrochemical Methods for Neuroscience. CRC, Boca Raton, pp 489–501Google Scholar
  82. Zapata A, Chefer VI, Shippenberg TS, Denoroy L (2009) Detection and quantification of neurotransmitters in dialysates. Curr Protoc Neurosci chapter 7:unit 7.4Google Scholar
  83. Zetterström T, Brundin P, Gage FH, Sharp T, Isacson O, Dunnett SB, Ungerstedt U, Björklund A (1986) In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Res 362:344–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Max Planck Institute of PsychiatryMunichGermany

Personalised recommendations