Advertisement

Cell and Tissue Research

, Volume 352, Issue 3, pp 695–705 | Cite as

Septin9 is involved in T-cell development and CD8+ T-cell homeostasis

  • Louise Berkhoudt Lassen
  • Annette Füchtbauer
  • Alexander Schmitz
  • Annette Balle Sørensen
  • Finn Skou Pedersen
  • Ernst-Martin FüchtbauerEmail author
Regular Article

Abstract

SEPTIN9 (SEPT9) is a filament-forming protein involved in numerous cellular processes. We have used a conditional knock out allele of Sept9 to specifically delete Sept9 in T-cells. As shown by fluorescence-activated cell sorting, loss of Sept9 at an early thymocyte stage in the thymus results in increased numbers of double-negative cells indicating that SEPT9 is involved in the transition from the double-negative stage during T-cell development. Accordingly, the relative numbers of mature T-cells in the periphery are decreased in mice with a T-cell-specific deletion of Sept9. Proliferation of Sept9-deleted CD8+ T-cells from the spleen is decreased upon stimulation in culture. The altered T-cell homeostasis caused by the loss of Sept9 results in an increase of CD8+ central memory T-cells.

Keywords

Sept9 T-cell development CD8+ T-cells T-cell homeostasis T-cell proliferation Mice (Sept9cond:Mx-Cre

Notes

Acknowledgments

The authors thank Lone Højgaard Nielsen for technical assistance, and Charlotte Christie Petersen, Rodrigo Labouriau and Bo Porse for advice regarding the set-up and analysis of experiments. Flow cytometry/cell sorting was performed at the FACS Core Facility, The Faculty of Health Sciences, Aarhus University, Denmark.

References

  1. Ammirati E, Cianflone D, Vecchio V, Banfi M, Vermi AC, De Metrio M, Grigore L, Pellegatta F, Pirillo A, Garlaschelli K, Manfredi AA, Catapano AL, Maseri A, Palini AG, Norata GD (2012) Effector memory T cells are associated with atherosclerosis in humans and animal models. J Am Heart Assoc 1:27–41PubMedCrossRefGoogle Scholar
  2. Billadeau DD, Nolz JC, Gomez TS (2007) Regulation of T-cell activation by the cytoskeleton. Nat Rev Immunol 7:131–143PubMedCrossRefGoogle Scholar
  3. Crotzer VL, Blum JS (2009) Autophagy and its role in MHC-mediated antigen presentation. J Immunol 182:3335–3341PubMedCrossRefGoogle Scholar
  4. Dent J, Kato K, Peng XR, Martinez C, Cattaneo M, Poujol C, Nurden P, Nurden A, Trimble WS, Ware J (2002) A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci USA 99:3064–3069PubMedCrossRefGoogle Scholar
  5. Estey MP, Di Ciano-Oliveira C, Froese CD, Bejide MT, Trimble WS (2010) Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J Cell Biol 191:741–749PubMedCrossRefGoogle Scholar
  6. Foulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE, Shen H (2002) Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 168:1528–1532PubMedGoogle Scholar
  7. Füchtbauer A, Lassen LB, Jensen AB, Howard J, Quiroga Ade S, Warming S, Sørensen AB, Pedersen FS, Füchtbauer EM (2011) Septin9 is involved in septin filament formation and cellular stability. Biol Chem 392:769–777PubMedCrossRefGoogle Scholar
  8. Hall PA, Russell SE (2004) The pathobiology of the septin gene family. J Pathol 204:489–505PubMedCrossRefGoogle Scholar
  9. Hall PA, Russell SE (2012) Mammalian septins: dynamic heteromers with roles in cellular morphogenesis and compartmentalization. J Pathol 226:287–299PubMedCrossRefGoogle Scholar
  10. Hall PA, Jung K, Hillan KJ, Russell SE (2005) Expression profiling the human septin gene family. J Pathol 206:269–278PubMedCrossRefGoogle Scholar
  11. Hall PA, Russell SEH, Pringle JR (2008) The septins. Wiley, New YorkCrossRefGoogle Scholar
  12. Hartwell LH (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276PubMedCrossRefGoogle Scholar
  13. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439PubMedCrossRefGoogle Scholar
  14. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M (2005) Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 8:343–352PubMedCrossRefGoogle Scholar
  15. Ihara M, Yamasaki N, Hagiwara A, Tanigaki A, Kitano A, Hikawa R, Tomimoto H, Noda M, Takanashi M, Mori H, Hattori N, Miyakawa T, Kinoshita M (2007) Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of alpha-synuclein neurotoxicity. Neuron 53:519–533PubMedCrossRefGoogle Scholar
  16. Kim MS, Froese CD, Estey MP, Trimble WS (2011) SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol 195:815–826PubMedCrossRefGoogle Scholar
  17. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self- and actin-templated assembly of mammalian septins. Dev Cell 3:791–802PubMedCrossRefGoogle Scholar
  18. Kuhlenbaumer G, Hannibal MC, Nelis E, Schirmacher A, Verpoorten N, Meuleman J, Watts GD, De Vriendt E, Young P, Stogbauer F, Halfter H, Irobi J, Goossens D, Del-Favero J, Betz BG, Hor H, Kurlemann G, Bird TD, Airaksinen E, Mononen T, Serradell AP, Prats JM, Van Broeckhoven C, De Jonghe P, Timmerman V, Ringelstein EB, Chance PF (2005) Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat Genet 37:1044–1046PubMedCrossRefGoogle Scholar
  19. Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429PubMedCrossRefGoogle Scholar
  20. Laouar A, Manocha M, Haridas V, Manjunath N (2008) Concurrent generation of effector and central memory CD8 T cells during vaccinia virus infection. PLoS One 3:e4089PubMedCrossRefGoogle Scholar
  21. McMurray MA, Thorner J (2009) Reuse, replace, recycle. Specificity in subunit inheritance and assembly of higher-order septin structures during mitotic and meiotic division in budding yeast. Cell Cycle 8:195–203PubMedCrossRefGoogle Scholar
  22. Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13:183–194PubMedGoogle Scholar
  23. Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, Gouin E, Demangel C, Brosch R, Zimmer C, Sartori A, Kinoshita M, Lecuit M, Cossart P (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8:433–444PubMedCrossRefGoogle Scholar
  24. Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89:6861–6865PubMedCrossRefGoogle Scholar
  25. Roseler S, Sandrock K, Bartsch I, Busse A, Omran H, Loges NT, Zieger B (2011) Lethal phenotype of mice carrying a Sept11 null mutation. Biol Chem 392:779–781PubMedCrossRefGoogle Scholar
  26. Russell SE, Hall PA (2011) Septin genomics: a road less travelled. Biol Chem 392:763–767PubMedCrossRefGoogle Scholar
  27. Sellin ME, Holmfeldt P, Stenmark S, Gullberg M (2011) Microtubules support a disk-like septin arrangement at the plasma membrane of mammalian cells. Mol Biol Cell 22:4588–4601PubMedCrossRefGoogle Scholar
  28. Sirajuddin M, Farkasovsky M, Hauer F, Kuhlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A (2007) Structural insight into filament formation by mammalian septins. Nature 449:311–315PubMedCrossRefGoogle Scholar
  29. Sørensen AB, Lund AH, Ethelberg S, Copeland NG, Jenkins NA, Pedersen FS (2000) Sint1, a common integration site in SL3-3-induced T-cell lymphomas, harbors a putative proto-oncogene with homology to the septin gene family. J Virol 74:2161–2168PubMedCrossRefGoogle Scholar
  30. Sørensen AB, Warming S, Fuchtbauer EM, Pedersen FS (2002) Alternative splicing, expression, and gene structure of the septin-like putative proto-oncogene Sint1. Gene 285:79–89PubMedCrossRefGoogle Scholar
  31. Suzuki G, Harper KM, Hiramoto T, Sawamura T, Lee M, Kang G, Tanigaki K, Buell M, Geyer MA, Trimble WS, Agatsuma S, Hiroi N (2009) Sept5 deficiency exerts pleiotropic influence on affective behaviors and cognitive functions in mice. Hum Mol Genet 18:1652–1660PubMedCrossRefGoogle Scholar
  32. Takada K, Jameson SC (2009) Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9:823–832PubMedCrossRefGoogle Scholar
  33. Tooley AJ, Gilden J, Jacobelli J, Beemiller P, Trimble WS, Kinoshita M, Krummel MF (2009) Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol 11:17–26PubMedCrossRefGoogle Scholar
  34. Ware J, Martínez C, Zieger B (2008) Septins and platelets. In: Hall PA, Russell SEH, Pringle JR (eds)The septins. Wiley, New York, pp 269–280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Louise Berkhoudt Lassen
    • 1
  • Annette Füchtbauer
    • 1
  • Alexander Schmitz
    • 1
    • 2
  • Annette Balle Sørensen
    • 3
  • Finn Skou Pedersen
    • 1
  • Ernst-Martin Füchtbauer
    • 1
    Email author
  1. 1.Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
  2. 2.Department of Haematology, Aalborg University HospitalAalborg UniversityAarhusDenmark
  3. 3.The State and University LibraryAarhusDenmark

Personalised recommendations