Advertisement

Cell and Tissue Research

, Volume 352, Issue 3, pp 671–684 | Cite as

Breast cancer tissue slices as a model for evaluation of response to rapamycin

  • Stana Helena Giorgi Grosso
  • Maria Lucia Hirata Katayama
  • Rosimeire Aparecida Roela
  • Suely Nonogaki
  • Fernando Augusto Soares
  • Helena Brentani
  • Leandro Lima
  • Maria Aparecida Azevedo Koike Folgueira
  • Angela Flávia Logullo Waitzberg
  • Fátima Solange Pasini
  • João Carlos Guedes Sampaio Góes
  • M. Mitzi BrentaniEmail author
Regular Article

Abstract

Rapamycin is a selective inhibitor of the mammalian target of rapamycin (mTOR), a regulator kinase that integrates growth factors signaling via the phosphoinositide-3-kinase pathway and that has emerged as a novel therapeutic modality in breast cancer (BC). We propose a pre-clinical “ex-vivo” personalized organotypic culture of BC that preserves the microenvironment to evaluate rapamycin-mediated gene expression changes. Freshly excised ductal invasive BC slices, 400 μm thick (n=30), were cultured in the presence or absence (control) of rapamycin (20 nM) for 24 h. Some slices were formalin-fixed for immunohistochemical determinations and some were processed for microarray analysis. Control slices in culture retained their tissue morphology and tissue viability (detected by BrdU uptake). The percentage of proliferating cells (assessed by Ki67) did not change up to 24 h of treatment. Immunohistochemical evaluation of p-AKT, p-mTOR, p-4EBP1 and p-S6K1 indicated that AKT/mTOR pathway activation was maintained during cultivation. For microarray analysis, slices were divided into two groups, according to the presence/absence of epidermal growth factor receptor-type 2 and analyzed separately. Limited overlap was seen among differentially expressed genes after treatment (P<0.01) in both groups suggesting different responses to rapamycin between these BC subtypes. Ontology analysis indicated that genes involved in biosynthetic processes were commonly reduced by rapamycin. Our network analysis suggested that concerted expression of these genes might distinguish controls from treated slices. Thus, breast carcinoma slices constitute a suitable physiological tool to evaluate the short-term effects of rapamycin on the gene profile of individual BC samples.

Keywords

Breast cancer Rapamycin Ex-vivo model AKT/mTOR pathway Co-expression network Human 

Notes

Acknowledgments

We are indebted to Dr. C. Krumdieck (University of Alabama, Birmingham, Ala., USA) for the kind donation of the Krumdieck tissue slicer to our institution. We also thank Dr. Igor Moyses Longo Snitcovsky for critical suggestions, Dr. Fiorita G. L. Mundim for helping with the immunohistochemical determinations, Mrs. Maria Jose Gonçalves Benevides for secretarial help and Mrs. Cristina Piñeiro Grandal for figure edition.

S.H.G.G. provided the tumor samples, prepared the tissue slices, collected all clinical data and was involved in drafting the manuscript. M.L.H.K. performed the culture, microarray and RT-PCR experiments. R.A.R. performed the microarray determinations. H.B. and R.A.R. performed the microarray data analysis. S.N., F.A.S. and A.F.L.W. participated in the immunohistochemistry studies. L.L. carried out the analysis of the co-expression network. J.C.S.G. provided clinical support for patient recruitment. M.A.A.K.F., M.L.H.K. and F.S.P. carried out the statistical analysis. M.M.B. was responsible for the study conception. M.M.B. and M.A.A.K.F. were involved in study design and manuscript preparation.

Supplementary material

441_2013_1608_MOESM1_ESM.doc (316 kb)
ESM 1 (DOC 316 kb)

References

  1. Akcakanat A, Zhang L, Tsavachidis S, Meric-Bernstam F (2009) The rapamycin-regulated gene expression signature determines prognosis for breast cancer. Mol Cancer 8:75PubMedCrossRefGoogle Scholar
  2. Andre F, Nahta R, Conforti R, Boulet T, Aziz M, Yuan LX et al (2008) Expression patterns and predictive value of phosphorylated AKT in early-stage breast cancer. Ann Oncol 19:315–320PubMedCrossRefGoogle Scholar
  3. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113PubMedCrossRefGoogle Scholar
  4. Barbosa EM, Nonogaki S, Katayama ML, Folgueira MA, Alves VF, Brentani MM (2004) Vitamin D3 modulation of plasminogen activator inhibitor type-1 in human breast carcinomas under organ culture. Virchows Arch 444:175–182PubMedCrossRefGoogle Scholar
  5. Bläuer M, Tammela TL, Ylikomi T (2008) A novel tissue-slice culture model for non-malignant human prostate. Cell Tissue Res 332:489–498PubMedCrossRefGoogle Scholar
  6. Bollig-Fischer A, Dewey TG, Ethier SP (2011) Oncogene activation induces metabolic transformation resulting in insulin-independence in human breast cancer cells. PLoS One 6:e17959PubMedCrossRefGoogle Scholar
  7. Bose S, Chandran S, Mirocha JM, Bose N (2006) The Akt pathway in human breast cancer: a tissue-array-based analysis. Mod Pathol 19:238–245PubMedCrossRefGoogle Scholar
  8. Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140PubMedCrossRefGoogle Scholar
  9. Deng J, Han Y, Yan C, Tian X, Tao J, Kang J, Li S (2010) Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt. Apoptosis 15:463–473PubMedCrossRefGoogle Scholar
  10. Desai BN, Myers BR, Schreiber SL (2002) FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci USA 99:4319–4324PubMedCrossRefGoogle Scholar
  11. Dillon RL, White DE, Muller WJ (2007) The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 26:1338–1345PubMedCrossRefGoogle Scholar
  12. Dudkin L, Dilling MB, Cheshire PJ, Harwood FC, Hollingshead M, Arbuck SG, Travis R, Sausville EA, Houghton PJ (2001) Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 7:1758–1764PubMedGoogle Scholar
  13. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRefGoogle Scholar
  14. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22PubMedCrossRefGoogle Scholar
  15. Heinonen H, Nieminen A, Saarela M, Kallioniemi A, Klefström J, Hautaniemi S et al (2008) Deciphering downstream gene targets of PI3K/mTOR/p70S6K pathway in breast cancer. BMC Genomics 9:348PubMedCrossRefGoogle Scholar
  16. Hernandez-Aya LF, Gonzalez-Angulo AM (2011) Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. Oncologist 16:(4)404–414PubMedCrossRefGoogle Scholar
  17. Macaskill EJ, Bartlett JM, Sabine VS, Faratian D, Renshaw L, White S, Campbell FM, Young O, Williams L, Thomas JS, Barber MD, Dixon JM (2011) The mammalian target of rapamycin inhibitor everolimus (RAD001) in early breast cancer: results of a pre-operative study. Breast Cancer Res Treat 128:725–734PubMedCrossRefGoogle Scholar
  18. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10:594–601PubMedCrossRefGoogle Scholar
  19. Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–2287PubMedCrossRefGoogle Scholar
  20. Milani C, Welsh J, Katayama ML, Lyra EC, Maciel MS, Brentani MM, Folgueira MA (2010) Human breast tumor slices: a model for identification of vitamin D regulated genes in the tumor microenvironment. J Steroid Biochem Mol Biol 21:151–155CrossRefGoogle Scholar
  21. Mira-y-Lopez R, Osborne MP, DePalo AJ, Ossowski L (1991) Estradiol modulation of plasminogen activator production in organ cultures of human breast carcinomas: correlation with clinical outcome of anti-estrogen therapy. Int J Cancer 47:827–832PubMedCrossRefGoogle Scholar
  22. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J et al (2004) Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 10:1013–1023PubMedCrossRefGoogle Scholar
  23. O’Reilly T, McSheehy PM (2010) Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol 3:65–79PubMedGoogle Scholar
  24. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508PubMedCrossRefGoogle Scholar
  25. Park SS, Kim SW (2007) Activated Akt signaling pathway in invasive ductal carcinoma of the breast: correlation with HER2 overexpression. Oncol Rep 18:139–143PubMedGoogle Scholar
  26. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and beclin 1 complexes. Biochimie 90:313–323PubMedCrossRefGoogle Scholar
  27. Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, Zou L, Xie XJ, Corey DR, Brugarolas J (2011) Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30:3242–3258PubMedCrossRefGoogle Scholar
  28. Peng T, Golub TR, Sabatini DM (2002) The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22:5575–5584PubMedCrossRefGoogle Scholar
  29. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350PubMedCrossRefGoogle Scholar
  30. Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J et al (2004) Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 22:2336–2347PubMedCrossRefGoogle Scholar
  31. Rojo F, Najera L, Lirola J, Jiménez J, Guzmán M, Sabadell MD et al (2007) 4E-Binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 13:81–89PubMedCrossRefGoogle Scholar
  32. Rozenchan PB, Carraro DM, Brentani H, de Carvalho Mota LD, Bastos EP, e Ferreira EN, Torres CH, Katayama ML, Roela RA, Lyra EC, Soares FA, Folgueira MA, Góes JC, Brentani MM (2009) Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer 125:2767–2777PubMedCrossRefGoogle Scholar
  33. Sabine VS, Sims AH, Macaskill EJ, Renshaw L, Thomas JS, Dixon JM et al (2010) Gene expression profiling of response to mTOR inhibitor everolimus in pre-operatively treated post-menopausal women with oestrogen receptor-positive breast cancer. Breast Cancer Res Treat 122:419–428PubMedCrossRefGoogle Scholar
  34. Satheesha S, Cookson VJ, Coleman LJ, Ingram N, Madhok B, Hanby AM, Suleman CA, Sabine VS, Macaskill EJ, Bartlett JM, Dixon JM, McElwaine JN, Hughes TA (2011) Response to mTOR inhibition: activity of eIF4E predicts sensitivity in cell lines and acquired changes in eIF4E regulation in breast cancer. Mol Cancer 10:19PubMedCrossRefGoogle Scholar
  35. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108PubMedCrossRefGoogle Scholar
  36. Sobral RA, Honda ST, Katayama ML, Brentani H, Brentani MM, Patrão DF, Folgueira MA (2008) Tumor slices as a model to evaluate doxorubicin in vitro treatment and expression of trios of genes PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2in canine mammary gland cancer. Acta Vet Scand 50:27PubMedCrossRefGoogle Scholar
  37. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRefGoogle Scholar
  38. Stoff-Khalili MA, Stoff A, Rivera AA, Banerjee NS, Everts M, Young S et al (2005) Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Res 7:1141–1152CrossRefGoogle Scholar
  39. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon y Cajal S, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610PubMedCrossRefGoogle Scholar
  40. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204PubMedCrossRefGoogle Scholar
  41. Tokunaga E, Kimura Y, Oki E, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Ikebe M, Kakeji Y, Baba H, Maehara Y (2006) Akt is frequently activated in HER2/neu-positive breast cancers and associated with poor prognosis among hormone-treated patients.Int J Cancer 118:284–289PubMedCrossRefGoogle Scholar
  42. Trapé AP, Katayama ML, Roela RA, Brentani H, Ravacci GR, de Araujo LL, Brentani MM (2012) Gene expression profile in response to doxorubicin-rapamycin combined treatment of HER-2-overexpressing human mammary epithelial cell lines. Mol Cancer Ther 11:464–474PubMedCrossRefGoogle Scholar
  43. Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A, Coggi G, Flavin R, Bosari S, Loda M (2010) Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci USA 107:8352–8356PubMedCrossRefGoogle Scholar
  44. Vestey SB, Sen C, Calder CJ, Perks CM, Pignatelli M, Winters ZE (2005) Activated Akt expression in breast cancer: correlation with p53, Hdm2 and patient outcome. Eur J Cancer 41:1017–1025PubMedCrossRefGoogle Scholar
  45. Yoo YA, Kang MH, Kim JS, Oh SC (2008) Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-smad 3 pathway. Carcinogenesis 29:480–490PubMedCrossRefGoogle Scholar
  46. Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, Gibbons JJ (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:(3)249–258PubMedCrossRefGoogle Scholar
  47. Zhou X, Tan M, Stone Hawthorne V, Klos KS, Lan KH, Yang Y et al (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10:6779–6788PubMedCrossRefGoogle Scholar
  48. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stana Helena Giorgi Grosso
    • 1
  • Maria Lucia Hirata Katayama
    • 2
  • Rosimeire Aparecida Roela
    • 2
  • Suely Nonogaki
    • 3
  • Fernando Augusto Soares
    • 4
  • Helena Brentani
    • 5
  • Leandro Lima
    • 6
  • Maria Aparecida Azevedo Koike Folgueira
    • 2
  • Angela Flávia Logullo Waitzberg
    • 7
  • Fátima Solange Pasini
    • 2
  • João Carlos Guedes Sampaio Góes
    • 1
  • M. Mitzi Brentani
    • 2
    Email author
  1. 1.Instituto Brasileiro de Controle do CâncerSão PauloBrasil
  2. 2.Departamento de Radiologia e Oncologia, Disciplina de Oncologia (LIM-24)Faculdade de Medicina da Universidade de São PauloSão PauloBrasil
  3. 3.Central, Divisão de Patologia, Laboratório de Imuno-histoquímicaInstituto Adolfo LutzSão PauloBrazil
  4. 4.Hospital A C CamargoSão PauloBrasil
  5. 5.Departamento de Psiquiatria (LIM-23)Faculdade de Medicina da Universidade de São PauloSão PauloBrasil
  6. 6.Laboratório de Bioinformática e Bioestatística, Centro Internacional de Pesquisa e Ensino (CIPE)Hospital AC CamargoSão PauloBrazil
  7. 7.Departamento de PatologiaUniversidade Federal de São PauloSão PauloBrasil

Personalised recommendations