Cell and Tissue Research

, Volume 353, Issue 2, pp 287–296 | Cite as

Electrophysiology and glaucoma: current status and future challenges

  • Michael BachEmail author
  • Charlotte M. Poloschek


Visual electrophysiology allows non-invasive monitoring of the function of most processing stages along the visual pathway. Here, we consider which of the available methods provides the most information concerning glaucomatous optic nerve disease. The multifocal electroretinogram (ERG), although often employed, is less affected in glaucoma than two direct measurements of retinal ganglion cell function, namely the pattern ERG (PERG) and the photopic negative response (PhNR) of the ERG. For the PERG, longitudinal studies have been reported, suggesting that this method can be used for the early detection of glaucoma; for the PhNR, no longitudinal study is available as yet. The multifocal PERG can spatially resolve ganglion cell function but its glaucomatous reduction is typically panretinal, even with only local field changes and so, its topographic resolution is of no advantage in glaucoma. The multifocal visual evoked potential promises objective perimetry and shows sensitivity and specificity comparable with standard automated perimetry but has not been established as a routine tool to date.


Glaucoma Electrophysiology Electroretinogram Multifocal visual evoked potential Pattern electroretinogram Photopic negative response 


  1. Arden GB, Carter RM, Hogg C, Siegel IM, Margolis S (1979) A gold foil electrode: extending the horizons for clinical electroretinography. Invest Ophthalmol Vis Sci 18:421–426PubMedGoogle Scholar
  2. Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11 (Suppl 2):S41–S49PubMedGoogle Scholar
  3. Bach M (2007) Preparation and montage of DTL-electrodes.
  4. Bach M, Hoffmann MB (2008) Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 85:386–395PubMedCrossRefGoogle Scholar
  5. Bach M, Mathieu M (2004) Different effect of dioptric defocus vs. light scatter on the pattern electroretinogram (PERG). Doc Ophthalmol 108:99–106PubMedCrossRefGoogle Scholar
  6. Bach M, Poloschek CM (2010) Elektrophysiologische Befunde beim Glaukom. Excerpta Med 2010:28–39Google Scholar
  7. Bach M, Hiss P, Röver J (1988) Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 69:315–322PubMedCrossRefGoogle Scholar
  8. Bach M, Gerling J, Geiger K (1992a) Optic atrophy reduces the pattern-electroretinogram for both fine and coarse stimulus patterns. Clin Vision Sci 7:327–333Google Scholar
  9. Bach M, Pfeiffer N, Birkner-Binder D (1992b) Pattern-electroretinogram reflects diffuse retinal damage in early glaucoma. Clin Vision Sci 7:335–340Google Scholar
  10. Bach M, Sulimma F, Gerling J (1998) Little local correlation of the pattern electroretinogram (PERG) and visual field measures in early glaucoma. Doc Ophthalmol 94:253–263CrossRefGoogle Scholar
  11. Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, Bomer TG, Funk J (2006) Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci 47:4881–4887PubMedCrossRefGoogle Scholar
  12. Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126:1–7PubMedCrossRefGoogle Scholar
  13. Baker CL, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol (Lond) 407:155–176Google Scholar
  14. Banitt MR, Ventura LM, Feuer WJ, Savatovsky E, Luna G, Shif O, Bosse B, Porciatti V (2013) Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. doi: 10.1167/iovs.12-11026
  15. Baseler HA, Sutter EE, Klein SA, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90:65–81PubMedCrossRefGoogle Scholar
  16. Bengtsson B (2002) Evaluation of VEP perimetry in normal subjects and glaucoma patients. Acta Ophthalmol Scand 80:620–626PubMedCrossRefGoogle Scholar
  17. Bjerre A, Grigg JR, Parry NRA, Henson DB (2004) Test–retest variability of multifocal visual evoked potential and SITA standard perimetry in glaucoma. Invest Ophthalmol Vis Sci 45:4035–4040PubMedCrossRefGoogle Scholar
  18. Bobak P, Bodis-Wollner I, Harnois C, Maffei L, Mylin L, Podos S, Thornton J (1983) Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol 96:72–83PubMedGoogle Scholar
  19. Bode SF, Jehle T, Bach M (2011) Pattern electroretinogram (PERG) in glaucoma suspects—new findings from a longitudinal study. Invest Ophthalmol Vis Sci 52:4300–4306PubMedCrossRefGoogle Scholar
  20. Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, Bosworth CF, Sample PA, Weinreb RN (2001) Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 42:1993–2003PubMedGoogle Scholar
  21. Bowd C, Vizzeri G, Tafreshi A, Zangwill Linda M, Sample Pamela A, Weinreb Robert N (2009) Diagnostic accuracy of pattern electroretinogram optimized for glaucoma detection. Ophthalmology 116:437–443PubMedCrossRefGoogle Scholar
  22. Bui B, He Z, Vingrys A, Nguyen C, Wong VHY, Fortune B (2013) Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina. J Ophthalmol 2013:1–15CrossRefGoogle Scholar
  23. Coupland SG, Janaky M (1989) ERG electrode in pediatric patients: comparison of DTL fiber, PVA-gel, and non-corneal skin electrodes. Doc Ophthalmol 71:427–433PubMedCrossRefGoogle Scholar
  24. Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988–991PubMedGoogle Scholar
  25. Forte R, Ambrosio L, Bonavolontà P, Ambrosio G (2010) Pattern electroretinogram optimized for glaucoma screening (PERGLA) and retinal nerve fiber thickness in suspected glaucoma and ocular hypertension. Doc Ophthalmol 120:187–192PubMedCrossRefGoogle Scholar
  26. Fortune B, Bearse MA, Cioffi George A, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647PubMedGoogle Scholar
  27. Fortune B, Goh K, Demirel S, Novitzki K, Mansberger SL, Johnson CA, Cioffi GA (2004) Detection of glaucomatous visual field loss using multifocal VEP. Perimetry Update 2002/2003. In: Henson D, Wall M (eds) Proceedings of the XVth International Perimetric Society Meeting, Stratford-upon-Avon, England, June 26-29, 2002. Kugler, The Hague, pp 251–260Google Scholar
  28. Fortune B, Demirel S, Zhang X, Hood DC, Patterson E, Jamil A, Mansberger SL, Cioffi GA, Johnson CA (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 48:1173–1180PubMedCrossRefGoogle Scholar
  29. Fortune B, Shaban D, Bui BV (2009) Multifocal visual evoked potential responses to pattern-reversal, pattern-onset, pattern-offset, and sparse pulse stimuli. Vis Neurosci 26:227–235PubMedCrossRefGoogle Scholar
  30. Garway-Heath DF, Hitchings RA (1998) Sources of bias in studies of optic disc and retinal nerve fibre layer morphology. Br J Ophthalmol 82:986PubMedCrossRefGoogle Scholar
  31. Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA (2002) Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 43:2213–2220PubMedGoogle Scholar
  32. Graham SL (2012) Where are we going with approaches such as PeRG, VeP, sWAP and FDT? Glaucoma Now 1:6–8Google Scholar
  33. Groneberg A, Teping C (1980) Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster. Ber Dtsch Ophthalmol Ges 77:409–415CrossRefGoogle Scholar
  34. Harrison JM, O’Connor PS, Young RSL, Kincaid M, Bentley R (1987) The pattern ERG in man following surgical resection of the optic nerve. Invest Ophthalmol Vis Sci 28:492–499PubMedGoogle Scholar
  35. Harrison WW, Viswanathan S, Malinovsky VE (2006) Multifocal pattern electroretinogram: cellular origins and clinical implications. Optom Vis Sci 83:473–485PubMedCrossRefGoogle Scholar
  36. Hoffmann MB, Flechner J-J (2008) Slow pattern-reversal stimulation facilitates the assessment of retinal function with multifocal recordings. Clin Neurophysiol 119:409–417PubMedCrossRefGoogle Scholar
  37. Hoffmann MB, Straube S, Bach M (2003) Pattern-onset stimulation boosts central multifocal VEP responses. J Vis 3:432–439PubMedCrossRefGoogle Scholar
  38. Holder GE (1997) The pattern electroretinogram in anterior visual pathway dysfunction and its relationship to the pattern visual evoked potential: a personal clinical review of 743 eyes. Eye 11:924–934PubMedCrossRefGoogle Scholar
  39. Holder GE, Votruba M, Carter AC, Bhattacharya SS, Fitzke FW, Moore AT (1998) Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95:217–228PubMedCrossRefGoogle Scholar
  40. Hood DC (2003) Objective measurement of visual function in glaucoma. Curr Opin Ophthalmol 14:78–82PubMedCrossRefGoogle Scholar
  41. Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 22:201–251PubMedCrossRefGoogle Scholar
  42. Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579PubMedGoogle Scholar
  43. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002a) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685PubMedGoogle Scholar
  44. Hood DC, Greenstein VC, Odel JG, Zhang X, Ritch R, Liebmann JM, Hong JE, Chen CS, Thienprasiddhi P (2002b) Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol 120:1672–1681PubMedCrossRefGoogle Scholar
  45. Hood DC, Zhang X, Hong JE, Chen CS (2002c) Quantifying the benefits of additional channels of multifocal VEP recording. Doc Ophthalmol 104:303–320PubMedCrossRefGoogle Scholar
  46. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11PubMedCrossRefGoogle Scholar
  47. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124:1–13PubMedCrossRefGoogle Scholar
  48. James AC, Ruseckaite R, Maddess T (2005) Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Vis Neurosci 22:45–54PubMedCrossRefGoogle Scholar
  49. Jampel HD, Singh K, Lin SC, Chen TC, Francis BA, Hodapp E, Samples JR, Smith SD (2011) Assessment of visual function in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology 118:986–1002PubMedCrossRefGoogle Scholar
  50. Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR (1989) Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 30:897–907PubMedGoogle Scholar
  51. Kakisu Y, Mizota A, Adachi E (1986) Clinical application of the pattern electroretinogram with lid skin electrode. Doc Ophthalmol 63:187–194PubMedCrossRefGoogle Scholar
  52. Klistorner AI, Graham SL (2011) Stimulus method for multifocal visual evoked potential. Patentdocs.
  53. Klistorner AI, Graham SL, Grigg JR, Billson FA (1998) Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 39:937–950PubMedGoogle Scholar
  54. Klistorner AI, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 100:155–165PubMedCrossRefGoogle Scholar
  55. Kramer SA, Ledolter AA, Todorova MG, Schötzau A, Orgül S, Palmowski-Wolfe AM (2013) The 2-global flash mfERG in glaucoma: attempting to increase sensitivity by reducing the focal flash luminance and changing filter settings. Doc Ophthalmol 126:57–67PubMedCrossRefGoogle Scholar
  56. Lai TY, Lai RY, Ngai JW, Chan WM, Li H, Lam DS (2008) First and second-order kernel multifocal electroretinography abnormalities in acute central serous chorioretinopathy. Doc Ophthalmol 116:29–40PubMedCrossRefGoogle Scholar
  57. Lindenberg T, Horn FK, Korth M (2003) Multifocal steady-state pattern-reversal electroretinography in glaucoma patients. Ophthalmologe 100:453–458PubMedGoogle Scholar
  58. Luo X, Frishman LJ (2011) Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci 52:8571–8584PubMedCrossRefGoogle Scholar
  59. Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci 49:2201–2207PubMedCrossRefGoogle Scholar
  60. Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211:953–954CrossRefGoogle Scholar
  61. McCulloch DL, Van Boemel GB, Borchert MS (1998) Comparisons of contact lens, foil, fiber and skin electrodes for patterns electroretinograms. Doc Ophthalmol 94:327–340CrossRefGoogle Scholar
  62. Mitzdorf U (1988) Evoked potentials and their physiological causes: an access to delocalized cortical activity. In: Basar E (ed) Springer Series in Brain Dynamics, vol 1. Springer, Berlin, pp 140–153Google Scholar
  63. North RV, Jones AL, Drasdo N, Wild JM, Morgan JE (2010) Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 51:1216–1222PubMedCrossRefGoogle Scholar
  64. Palmowski AM, Berninger T, Allgayer R, Andrielis H, Heinemann-Vernaleken B, Rudolph G (1999) Effects of refractive blur on the multifocal electroretinogram. Doc Ophthalmol 99:41–54PubMedCrossRefGoogle Scholar
  65. Pfeiffer N, Tillmon B, Bach M (1993) Predictive value of the pattern-electroretinogram in high-risk ocular hypertension. Invest Ophthalmol Vis Sci 34:1710–1715PubMedGoogle Scholar
  66. Pieh C, Hoffmann MB, Bach M (2005) The influence of defocus on multifocal visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 243:38–42PubMedCrossRefGoogle Scholar
  67. Poloschek CM, Bach M (2009a) Can we do without mydriasis in multifocal ERG recordings? Doc Ophthalmol 118:121–127PubMedCrossRefGoogle Scholar
  68. Poloschek CM, Bach M (2009b) The mfERG response topography with scaled stimuli: effect of the stretch factor. Doc Ophthalmol 119:51–58PubMedCrossRefGoogle Scholar
  69. Poloschek CM, Bach M (2012) Electrophysiological examination methods in glaucoma diagnostics. Ophthalmologe 109:358–363PubMedCrossRefGoogle Scholar
  70. Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111:161–168PubMedCrossRefGoogle Scholar
  71. Porciatti V, Falsini B, Scalia G, Fadda A, Fontanesi G (1988) The pattern electroretinogram by skin electrodes: effect of spatial frequency and age. Doc Ophthalmol 70:117–122PubMedCrossRefGoogle Scholar
  72. Preiser D, Lagreze WA, Bach M, Poloschek CM (2013) Photopic negative response (PhNR) versus Pattern Electroretinogram (PERG) in early glaucoma. Invest Ophthalmol Vis Sci 54:1182–1191PubMedCrossRefGoogle Scholar
  73. Rangaswamy NV, Shirato S, Muneyoshi K, Digby BI, Robson JG, Frishman LJ (2007) Effects of spectral characteristics of Ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Invest Ophthalmol Vis Sci 48:4818–4828PubMedCrossRefGoogle Scholar
  74. Raz D, Seeliger MW, Geva AB, Percicot CL, Lambrou GN, Ofri R (2002) The effect of contrast and luminance on mfERG responses in a monkey model of glaucoma. Invest Ophthalmol Vis Sci 43:2027–2035PubMedGoogle Scholar
  75. Rovamo J (1983) Cortical magnification factor and contrast sensitivity to luminance-modulated chromatic gratings. Acta Physiol Scand 119:365–371PubMedCrossRefGoogle Scholar
  76. Sehi M, Grewal DS, Goodkin ML, Greenfield DS (2010) Reversal of retinal ganglion cell dysfunction after surgical reduction of intraocular pressure. Ophthalmology 117:2329–2336PubMedCrossRefGoogle Scholar
  77. Sieving PA, Steinberg RH (1987) Proximal retinal contributions to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57:104–120PubMedGoogle Scholar
  78. Sieving PA, Frishman LJ, Steinberg RH (1986) Scotopic threshold response of proximal retina in cat. J Neurophysiol 56:1049–1061PubMedGoogle Scholar
  79. Stiefelmeyer S, Neubauer AS, Berninger T, Arden GB, Rudolph G (2004) The multifocal pattern electroretinogram in glaucoma. Vision Res 44:103–112PubMedCrossRefGoogle Scholar
  80. Sutter EE (2000) The interpretation of multifocal binary kernels. Doc Ophthalmol 100:49–75PubMedCrossRefGoogle Scholar
  81. Sutter EE (2001) Imaging visual function with the multifocal m-sequence technique. Vis Res 41:1241–1255PubMedCrossRefGoogle Scholar
  82. Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vis Res 39:419–436PubMedCrossRefGoogle Scholar
  83. Sutter EE, Tran D (1992) The field topography of ERG components in man. I. The photopic luminance response. Vision Res 32:433–446PubMedCrossRefGoogle Scholar
  84. Tafreshi A, Racette L, Weinreb RN, Sample PA, Zangwill LM, Medeiros FA, Bowd C (2010) Pattern electroretinogram and psychophysical tests of visual function for discriminating between healthy and glaucoma eyes. Am J Ophthalmol 149:488–495PubMedCrossRefGoogle Scholar
  85. Thompson DA, Drasdo N (1987) An improved method for using the DTL fibre in electroretinography. Ophthalmic Physiol Opt 7:315–319PubMedCrossRefGoogle Scholar
  86. Trick GL (1985) Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. Invest Ophthalmol Vis Sci 26:1750–1758PubMedGoogle Scholar
  87. Van den Berg TJ, Riemslag FC, De Vos GW, Verduyn Lunel HF (1986) Pattern ERG and glaucomatous visual field defects. Doc Ophthalmol 61:335–341PubMedCrossRefGoogle Scholar
  88. Ventura LM, Porciatti V (2005) Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology 112:20–27PubMedCrossRefGoogle Scholar
  89. Ventura LM, Porciatti V (2006) Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol 17:196–202PubMedCrossRefGoogle Scholar
  90. Ventura LM, Sorokac N, De Los SR, Feuer WJ, Porciatti V (2006) The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 47:3904–3911PubMedCrossRefGoogle Scholar
  91. Ventura LM, Golubev I, Feuer WJ, Porciatti V (2011) Pattern electroretinogram progression in glaucoma suspects. J Glaucoma 22:219–225CrossRefGoogle Scholar
  92. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136PubMedGoogle Scholar
  93. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810PubMedGoogle Scholar
  94. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522PubMedGoogle Scholar
  95. Wanger P, Persson HE (1983) Pattern-reversal electroretinograms in unilateral glaucoma. Invest Ophthalmol Vis Sci 24:749–753PubMedGoogle Scholar
  96. Yang A, Swanson WH (2007) A new pattern electroretinogram paradigm evaluated in terms of user friendliness and agreement with perimetry. Ophthalmology 114:671–679PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Section Visual Function, Department of OphthalmologyUniversity of FreiburgFreiburgGermany
  2. 2.Section Neuro- and Pediatric Ophthalmology, Department of OphthalmologyUniversity of FreiburgFreiburgGermany
  3. 3.Universitäts-AugenklinikFreiburgGermany

Personalised recommendations