Cell and Tissue Research

, Volume 351, Issue 2, pp 289–300 | Cite as

Netherton syndrome: skin inflammation and allergy by loss of protease inhibition

  • Alain HovnanianEmail author


Netherton syndrome (NS) is a rare autosomal recessive skin disease with severe skin inflammation and scaling, a specific hair shaft defect and constant allergic manifestations. NS is caused by loss-of-function mutations in SPINK5 (serine protease inhibitor of kazal type 5) encoding LEKTI-1 (lympho-epithelial kazal type related inhibitor type 5) expressed in stratified epithelia. In vitro and in vivo studies in murine models and in NS patients have cast light on the pathogenesis of the disease and shown that LEKTI deficiency results in unopposed kallikrein-related peptidase 5 (KLK5) and KLK7 activities and to the overactivity of a new epidermal protease, elastase 2 (ELA2). Two main cascades initiated by KLK5 activity have emerged. One results in desmoglein 1 degradation and desmosome cleavage leading to stratum corneum detachment. KLK5 also activates KLK7 and ELA2, which contribute to a defective skin barrier. This facilitates allergen and microbe penetration and generates danger signals leading to caspase 1 activation and the production of active interleukin-1β. In parallel, KLK5 activates a specific cascade of allergy and inflammation by activating protease-activated receptor-2 (PAR-2) receptors. PAR-2 activation triggers the production of the major pro-Th2 cytokine TSLP (thymic stromal lymphopoietin) and several inflammatory cytokines, including tumour necrosis factor-α. Levels of thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) also contribute to allergy in a PAR-2-independent manner. Patient investigations have confirmed these abnormalities and revealed a wide spectrum of disease expression, sometimes associated with residual LEKTI expression. These results have demonstrated that the tight regulation of epidermal protease activity is essential for skin homeostasis and identified new targets for therapeutic intervention. They also provide a link with atopic dermatitis through deregulated protease activity, as recently supported by functional studies of the E420K LEKTI variant.


Serine protease inhibitor of kazal type 5 (SPINK5Lympho-epithelial Kazal type related inhibitor type 5 (LEKTI) Kallikreins (KLK) Protease-activated receptor-2 (PAR-2) Thymic stromal lymphopoietin (TSLP) 


  1. Allen A, Siegfried E, Silverman R, Williams ML, Elias PM, Szabo SK, Korman NJ (2001) Significant absorption of topical tacrolimus in 3 patients with Netherton syndrome. Arch Dermatol 137:747–750PubMedGoogle Scholar
  2. Alpigiani MG, Salvati P, Schiaffino MC, Occella C, Castiglia D, Covaciu C, Lorini R (2012) A new SPINK5 mutation in a patient with Netherton syndrome: a case report. Pediatr Dermatol 29:521–522PubMedCrossRefGoogle Scholar
  3. Andre E, Till M, Descargues P, Cordier MP, Fouilhoux A, Haftek M, Hovnanian A, Lachaux A (2005) Netherton syndrome: a type of infantile erythroderma with failure to thrive, immune deficiency, rickets. Report of 3 cases. Arch Pediatr 12:1364–1367PubMedCrossRefGoogle Scholar
  4. Bennett K, Callard R, Heywood W, Harper J, Jayakumar A, Clayman GL, Di WL, Mills K (2010) New role for LEKTI in skin barrier formation: label-free quantitative proteomic identification of caspase 14 as a novel target for the protease inhibitor LEKTI. J Proteome Res 9:4289–4294PubMedCrossRefGoogle Scholar
  5. Bennett K, Heywood W, Di WL, Harper J, Clayman GL, Jayakumar A, Callard R, Mills K (2012) The identification of a new role for LEKTI in the skin: the use of protein “bait” arrays to detect defective trafficking of dermcidin in the skin of patients with Netherton syndrome. J Proteomics 75:3925–3937PubMedCrossRefGoogle Scholar
  6. Bitoun E, Bodemer C, Amiel J, de Prost Y, Stoll C, Calvas P, Hovnanian A (2002a) Prenatal diagnosis of a lethal form of Netherton syndrome by SPINK5 mutation analysis. Prenat Diagn 22:121–126PubMedCrossRefGoogle Scholar
  7. Bitoun E, Chavanas S, Irvine AD, Lonie L, Bodemer C, Paradisi M, Hamel-Teillac D, Ansai S, Mitsuhashi Y, Taieb A et al (2002b) Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol 118:352–361PubMedCrossRefGoogle Scholar
  8. Bitoun E, Micheloni A, Lamant L, Bonnart C, Tartaglia-Polcini A, Cobbold C, Al Saati T, Mariotti F, Mazereeuw-Hautier J, Boralevi F et al (2003) LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet 12:2417–2430PubMedCrossRefGoogle Scholar
  9. Bonnart C, Deraison C, Lacroix M, Hovnanian A (2010a) Elastase 2, a key player in the integrity of the epidermal barrier and in Netherton syndrome. Med Sci (Paris) 26:681–685CrossRefGoogle Scholar
  10. Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, Briot A, Gonthier M, Lamant L, Dubus P et al (2010b) Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 120:871–882PubMedCrossRefGoogle Scholar
  11. Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, Sotiropoulou G, Diamandis EP (2007) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 282:3640–3652PubMedCrossRefGoogle Scholar
  12. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, Dubus P, Hovnanian A (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206:1135–1147PubMedCrossRefGoogle Scholar
  13. Briot A, Lacroix M, Robin A, Steinhoff M, Deraison C, Hovnanian A (2010) Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J Invest Dermatol 130:2736–2742PubMedCrossRefGoogle Scholar
  14. Chao SC, Tsai YM, Lee JY (2003) A compound heterozygous mutation of the SPINK5 gene in a Taiwanese boy with Netherton syndrome. J Formos Med Assoc 102:418–423PubMedGoogle Scholar
  15. Chao SC, Richard G, Lee JY (2005) Netherton syndrome: report of two Taiwanese siblings with staphylococcal scaled skin syndrome and mutation of SPINK5. Br J Dermatol 152:159–165PubMedCrossRefGoogle Scholar
  16. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafe JL, Wilkinson J, Taieb A, Barrandon Y et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25:141–142PubMedCrossRefGoogle Scholar
  17. Comel M (1949) Ichthyosis linearis circumflexa. Dermatologica 98:133–136PubMedCrossRefGoogle Scholar
  18. Cui CY, Aragane Y, Maeda A, Piao YL, Takahashi M, Kim LH, Tezuka T (1999) Bikunin, a serine protease inhibitor, is present on the cell boundary of epidermis. J Invest Dermatol 113:182–188PubMedCrossRefGoogle Scholar
  19. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, Wagberg F, Brattsand M, Hachem JP, Leonardsson G et al (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18:3607–3619PubMedCrossRefGoogle Scholar
  20. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, Elias P, Barrandon Y, Zambruno G, Sonnenberg A et al (2005) Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 37:56–65PubMedGoogle Scholar
  21. Descargues P, Deraison C, Prost C, Fraitag S, Mazereeuw-Hautier J, D’Alessio M, Ishida-Yamamoto A, Bodemer C, Zambruno G, Hovnanian A (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol 126:1622–1632PubMedCrossRefGoogle Scholar
  22. Di WL, Larcher F, Semenova E, Talbot GE, Harper JI, Del Rio M, Thrasher AJ, Qasim W (2011a) Ex-vivo gene therapy restores LEKTI activity and corrects the architecture of Netherton syndrome-derived skin grafts. Mol Ther 19:408–416PubMedCrossRefGoogle Scholar
  23. Di WL, Semenova E, Larcher F, Del Rio M, Harper JI, Thrasher A, Qasim W (2011b) Human involucrin promoter mediates repression resistant and compartment specific LEKTI expression. Hum Gene Ther 23:83–90CrossRefGoogle Scholar
  24. Egelrud T, Brattsand M, Kreutzmann P, Walden M, Vitzithum K, Marx UC, Forssmann WG, Magert HJ (2005) hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol 153:1200–1203PubMedCrossRefGoogle Scholar
  25. Elias PM, Schmuth M (2009) Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 9:437–446PubMedCrossRefGoogle Scholar
  26. Folster-Holst R, Swensson O, Stockfleth E, Monig H, Mrowietz U, Christophers E (1999) Comel-Netherton syndrome complicated by papillomatous skin lesions containing human papillomaviruses 51 and 52 and plane warts containing human papillomavirus 16. Br J Dermatol 140:1139–1143PubMedCrossRefGoogle Scholar
  27. Fong K, Akdeniz S, Isi H, Taskesen M, McGrath JA, Lai-Cheong JE (2010) New homozygous SPINK5 mutation, p.Gln333X, in a Turkish pedigree with Netherton syndrome. Clin Exp Dermatol 36:412–415PubMedCrossRefGoogle Scholar
  28. Fontao L, Laffitte E, Briot A, Kaya G, Roux-Lombard P, Fraitag S, Hovnanian AA, Saurat JH (2011) Infliximab infusions for Netherton syndrome: sustained clinical improvement correlates with a reduction of thymic stromal lymphopoietin levels in the skin. J Invest Dermatol 131:1947–1950PubMedCrossRefGoogle Scholar
  29. Fortugno P, Bresciani A, Paolini C, Pazzagli C, El Hachem M, D’Alessio M, Zambruno G (2011) Proteolytic activation cascade of the Netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J Invest Dermatol 131:2223-2232Google Scholar
  30. Fortugno P, Furio L, Teson M, Berretti M, El Hachem M, Zambruno G, Hovnanian A, D’Alessio M (2012) The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Hum Mol Genet 21:4187–4200PubMedCrossRefGoogle Scholar
  31. Furio L, Hovnanian A (2011) When activity requires breaking up: LEKTI proteolytic activation cascade for specific proteinase inhibition. J Invest Dermatol 131:2169–2173PubMedCrossRefGoogle Scholar
  32. Garty BZ, Nimri R (2008) Hypothyroidism in Netherton syndrome. Pediatr Dermatol 25:134–135PubMedCrossRefGoogle Scholar
  33. Goujon E, Beer F, Fraitag S, Hovnanian A, Vabres P (2010) “Matchstick” eyebrow hairs: a dermoscopic clue to the diagnosis of Netherton syndrome. J Eur Acad Dermatol Venereol 24:740–741PubMedCrossRefGoogle Scholar
  34. Hachem JP, Wagberg F, Schmuth M, Crumrine D, Lissens W, Jayakumar A, Houben E, Mauro TM, Leonardsson G, Brattsand M et al (2006) Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol 126:1609–1621PubMedCrossRefGoogle Scholar
  35. Hausser I, Anton-Lamprecht I (1996) Severe congenital generalized exfoliative erythroderma in newborns and infants: a possible sign of Netherton syndrome. Pediatr Dermatol 13:183–199PubMedCrossRefGoogle Scholar
  36. Hewett DR, Simons AL, Mangan NE, Jolin HE, Green SM, Fallon PG, McKenzie AN (2005) Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet 14:335–346PubMedCrossRefGoogle Scholar
  37. Hintner H, Jaschke E, Fritsch P (1980) Netherton syndrome: weakened immunity, generalized verrucosis and carcinogenesis. Hautarzt 31:428–432PubMedGoogle Scholar
  38. Hosomi N, Fukai K, Nakanishi T, Funaki S, Ishii M (2008) Caspase-1 activity of stratum corneum and serum interleukin-18 level are increased in patients with Netherton syndrome. Br J Dermatol 159:744–746PubMedGoogle Scholar
  39. Hovnanian A (2012) Netherton syndrome: new advances in the clinic, disease mechanism and treatment. Expert Rev Dermatol 7:69–80CrossRefGoogle Scholar
  40. Jayakumar A, Kang Y, Mitsudo K, Henderson Y, Frederick MJ, Wang M, El-Naggar AK, Marx UC, Briggs K, Clayman GL (2004) Expression of LEKTI domains 6-9′ in the baculovirus expression system: recombinant LEKTI domains 6-9′ inhibit trypsin and subtilisin A. Protein Expr Purif 35:93–101PubMedCrossRefGoogle Scholar
  41. Judge MR, Morgan G, Harper JI (1994) A clinical and immunological study of Netherton’s syndrome. Br J Dermatol 131:615–621PubMedCrossRefGoogle Scholar
  42. Kabesch M, Carr D, Weiland SK, Mutius E von (2004) Association between polymorphisms in serine protease inhibitor, kazal type 5 and asthma phenotypes in a large German population sample. Clin Exp Allergy J Br Soc Allergy Clin Immunol 34:340–345Google Scholar
  43. Kato A, Fukai K, Oiso N, Hosomi N, Murakami T, Ishii M (2003) Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 148:665–669PubMedCrossRefGoogle Scholar
  44. Krasagakis K, Ioannidou DJ, Stephanidou M, Manios A, Panayiotides JG, Tosca AD (2003) Early development of multiple epithelial neoplasms in Netherton syndrome. Dermatology 207:182–184PubMedCrossRefGoogle Scholar
  45. Kreutzmann P, Schulz A, Standker L, Forssmann WG, Magert HJ (2004) Recombinant production, purification and biochemical characterization of domain 6 of LEKTI: a temporary Kazal-type-related serine proteinase inhibitor. J Chromatogr B Analyt Technol Biomed Life Sci 803:75–81PubMedCrossRefGoogle Scholar
  46. Kubler HC, Kuhn W, Rummel HH, Kaufmann I, Kaufmann M (1987) Development of cancer (vulvar cancer) in the Netherton syndrome (ichthyosis, hair anomalies, atopic diathesis). Geburtshilfe Frauenheilkd 47:742–744PubMedCrossRefGoogle Scholar
  47. Kusunoki T, Okafuji I, Yoshioka T, Saito M, Nishikomori R, Heike T, Sugai M, Shimizu A, Nakahata T (2005) SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis. J Allergy Clin Immunol 115:636–638PubMedCrossRefGoogle Scholar
  48. Lacroix M, Lacaze-Buzy L, Furio L, Tron E, Valari M, Van de Wier G, Bodemer C, Bygum A, Bursztejn A-C, Gaitanis G et al (2011) Clinical expression and new SPINK5 splicing defects in Netherton syndrome: unmasking a frequent founder synonymous mutation and unconventional intronic mutations. J Invest Dermatol 132:575–582Google Scholar
  49. Lacroix M, Lacaze-Buzy L, Furio L, Tron E, Valari M, Van der Wier G, Bodemer C, Bygum A, Bursztejn AC, Gaitanis G et al (2012) Clinical expression and new SPINK5 splicing defects in Netherton syndrome: unmasking a frequent founder synonymous mutation and unconventional intronic mutations. J Invest Dermatol 132:575–582PubMedCrossRefGoogle Scholar
  50. Li AL, Walsh S, McKay DR (2011) Surgical management of a giant condyloma of Buschke-Lowenstein in a patient with Netherton syndrome using the pedicled anterolateral thigh flap—a case report. J Plast Reconstr Aesthet Surg 64:1533–1536PubMedCrossRefGoogle Scholar
  51. Lin SP, Huang SY, Tu ME, Wu YH, Lin CY, Lin HY, Lee-Chen GJ (2007) Netherton syndrome: mutation analysis of two Taiwanese families. Arch Dermatol Res 299:145–150PubMedCrossRefGoogle Scholar
  52. Macknet CA, Morkos A, Job L, Garberoglio MC, Clark RD, Macknet KD Jr, Peverini RL (2008) An infant with Netherton syndrome and persistent pulmonary hypertension requiring extracorporeal membrane oxygenation. Pediatr Dermatol 25:368–372PubMedCrossRefGoogle Scholar
  53. Magert HJ, Standker L, Kreutzmann P, Zucht HD, Reinecke M, Sommerhoff CP, Fritz H, Forssmann WG (1999) LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem 274:21499–21502PubMedCrossRefGoogle Scholar
  54. Magert HJ, Kreutzmann P, Drogemuller K, Standker L, Adermann K, Walden M, John H, Korting HC, Forssmann WG (2002a) The 15-domain serine proteinase inhibitor LEKTI: biochemical properties, genomic organization, and pathophysiological role. Eur J Med Res 7:49–56PubMedGoogle Scholar
  55. Magert HJ, Kreutzmann P, Standker L, Walden M, Drogemuller K, Forssmann WG (2002b) LEKTI: a multidomain serine proteinase inhibitor with pathophysiological relevance. Int J Biochem Cell Biol 34:573–576PubMedCrossRefGoogle Scholar
  56. Mazereeuw-Hautier J, Cope J, Ong C, Green A, Hovnanian A, Harper JI (2006) Topical recombinant alpha1-antitrypsin: a potential treatment for Netherton syndrome? Arch Dermatol 142:396–398PubMedGoogle Scholar
  57. Meyer-Hoffert U, Wu Z, Schroder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4:e4372PubMedCrossRefGoogle Scholar
  58. Meyer-Hoffert U, Wu Z, Kantyka T, Fischer J, Latendorf T, Hansmann B, Bartels J, He Y, Glaser R, Schroder JM (2010) Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J Biol Chem 285:32174–32181PubMedCrossRefGoogle Scholar
  59. Mitsudo K, Jayakumar A, Henderson Y, Frederick MJ, Kang Y, Wang M, El-Naggar AK, Clayman GL (2003) Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 42:3874–3881PubMedCrossRefGoogle Scholar
  60. Mizuno Y, Suga Y, Muramatsu S, Hasegawa T, Shimizu T, Ogawa H (2005) A Japanese infant with localized ichthyosis linearis circumflexa on the palms and soles harbouring a compound heterozygous mutation in the SPINK5 gene. Br J Dermatol 153:661–663PubMedCrossRefGoogle Scholar
  61. Mizuno Y, Suga Y, Haruna K, Muramatsu S, Hasegawa T, Kohroh K, Shimizu T, Komatsu N, Ogawa H, Ikeda S (2006) A case of a Japanese neonate with congenital ichthyosiform erythroderma diagnosed as Netherton syndrome. Clin Exp Dermatol 31:677–680PubMedCrossRefGoogle Scholar
  62. Netherton EW (1958) A unique case of trichorrhexis nodosa: bamboo hairs. AMA Arch Derm 78:483–487PubMedCrossRefGoogle Scholar
  63. Nishio Y, Noguchi E, Shibasaki M, Kamioka M, Ichikawa E, Ichikawa K, Umebayashi Y, Otsuka F, Arinami T (2003) Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun 4:515–517PubMedCrossRefGoogle Scholar
  64. Oji V, Beljan G, Beier K, Traupe H, Luger TA (2005) Topical pimecrolimus: a novel therapeutic option for Netherton syndrome. Br J Dermatol 153:1067–1068PubMedCrossRefGoogle Scholar
  65. Ong C, Harper J (2006) Netherton’s syndrome. In: Harper J, Orange A, Prose N (eds) Textbook of pediatric dermatology. Blackwell, Turin, pp 1359–1366Google Scholar
  66. Ong C, O’Toole EA, Ghali L, Malone M, Smith VV, Callard R, Harper JI (2004) LEKTI demonstrable by immunohistochemistry of the skin: a potential diagnostic skin test for Netherton syndrome. Br J Dermatol 151:1253–1257PubMedCrossRefGoogle Scholar
  67. Pohl M, Zimmerhackl LB, Hausser I, Ludwig H, Hildebrandt F, Gordjani N, Sutor AH, Anton-Lamprecht I, Brandis M (1998) Acute bilateral renal vein thrombosis complicating Netherton syndrome. Eur J Pediatr 157:157–160PubMedCrossRefGoogle Scholar
  68. Raghunath M, Tontsidou L, Oji V, Aufenvenne K, Schurmeyer-Horst F, Jayakumar A, Stander H, Smolle J, Clayman GL, Traupe H (2004) SPINK5 and Netherton syndrome: novel mutations, demonstration of missing LEKTI, and differential expression of transglutaminases. J Invest Dermatol 123:474–483PubMedCrossRefGoogle Scholar
  69. Renner ED, Hartl D, Rylaarsdam S, Young ML, Monaco-Shawver L, Kleiner G, Markert ML, Stiehm ER, Belohradsky BH, Upton MP et al (2009) Comel-Netherton syndrome defined as primary immunodeficiency. J Allergy Clin Immunol 124:536–543PubMedCrossRefGoogle Scholar
  70. Roedl D, Oji V, Buters JT, Behrendt H, Braun-Falco M (2011) rAAV2-mediated restoration of LEKTI in LEKTI-deficient cells from Netherton patients. J Dermatol Sci 61:194–198PubMedCrossRefGoogle Scholar
  71. Saghari S, Woolery-Lloyd H, Nouri K (2002) Squamous cell carcinoma in a patient with Netherton’s syndrome. Int J Dermatol 41:415–416PubMedCrossRefGoogle Scholar
  72. Saif GB, Al-Khenaizan S (2007) Netherton syndrome: successful use of topical tacrolimus and pimecrolimus in four siblings. Int J Dermatol 46:290–294PubMedCrossRefGoogle Scholar
  73. Schalkwijk J, Chang A, Janssen P, De Jongh GJ, Mier PD (1990) Skin-derived antileucoproteases (SKALPs): characterization of two new elastase inhibitors from psoriatic epidermis. Br J Dermatol 122:631–641PubMedCrossRefGoogle Scholar
  74. Schechter NM, Choi EJ, Wang ZM, Hanakawa Y, Stanley JR, Kang Y, Clayman GL, Jayakumar A (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 386:1173–1184PubMedCrossRefGoogle Scholar
  75. Shimomura Y, Sato N, Kariya N, Takatsuka S, Ito M (2005) Netherton syndrome in two Japanese siblings with a novel mutation in the SPINK5 gene: immunohistochemical studies of LEKTI and other epidermal molecules. Br J Dermatol 153:1026–1030PubMedCrossRefGoogle Scholar
  76. Soreide K, Soiland H, Korner H, Haga H, Soreide JA (2005) Acute pancreatitis in a young girl with the Netherton syndrome. J Pediatr Surg 40:e69–e72PubMedCrossRefGoogle Scholar
  77. Sprecher E, Chavanas S, DiGiovanna JJ, Amin S, Nielsen K, Prendiville JS, Silverman R, Esterly NB, Spraker MK, Guelig E et al (2001) The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol 117:179–187PubMedCrossRefGoogle Scholar
  78. Sprecher E, Tesfaye-Kedjela A, Ratajczak P, Bergman R, Richard G (2004) Deleterious mutations in SPINK5 in a patient with congenital ichthyosiform erythroderma: molecular testing as a helpful diagnostic tool for Netherton syndrome. Clin Exp Dermatol 29:513–517PubMedCrossRefGoogle Scholar
  79. Stryk S, Siegfried EC, Knutsen AP (1999) Selective antibody deficiency to bacterial polysaccharide antigens in patients with Netherton syndrome. Pediatr Dermatol 16:19–22PubMedCrossRefGoogle Scholar
  80. Sun JD, Linden KG (2006) Netherton syndrome: a case report and review of the literature. Int J Dermatol 45:693–697PubMedCrossRefGoogle Scholar
  81. Szabo R, Kosa P, List K, Bugge TH (2009) Loss of matriptase suppression underlies spint1 mutation-associated ichthyosis and postnatal lethality. Am J Pathol 174:2015–2022PubMedCrossRefGoogle Scholar
  82. Tartaglia-Polcini A, Bonnart C, Micheloni A, Cianfarani F, Andre A, Zambruno G, Hovnanian A, D’Alessio M (2006) SPINK5, the defective gene in Netherton syndrome, encodes multiple LEKTI isoforms derived from alternative pre-mRNA processing. J Invest Dermatol 126:315–324PubMedCrossRefGoogle Scholar
  83. Traupe H (1989) The Comel-Netherton syndrome. In: Traupe H (ed) The ichthyoses: a guide to clinical diagnosis, genetic counseling and therapy. Springer, Berlin, pp 168–178Google Scholar
  84. Van Gysel D, Koning H, Baert MR, Savelkoul HF, Neijens HJ, Oranje AP (2001) Clinico-immunological heterogeneity in Comel-Netherton syndrome. Dermatology 202:99–107PubMedCrossRefGoogle Scholar
  85. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, Wong K, Abecasis GR, Jones EY, Harper JI et al (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29:175–178PubMedCrossRefGoogle Scholar
  86. Weber F, Fuchs PG, Pfister HJ, Hinter H, Fritsch P, Hoepfl R (2001) Human papillomavirus infection in Nehterton’s syndrome. Br J Dermatol 144:1044–1049PubMedCrossRefGoogle Scholar
  87. Weidinger S, Baurecht H, Wagenpfeil S, Henderson J, Novak N, Sandilands A, Chen H, Rodriguez E, O’Regan GM, Watson R et al (2008) Analysis of the individual and aggregate genetic contributions of previously identified serine peptidase inhibitor kazal type 5 (SPINK5), kallikrein-related peptidase 7 (KLK7), and filaggrin (FLG) polymorphisms to eczema risk. J Allergy Clin Immunol 122:e564CrossRefGoogle Scholar
  88. Wingens M, Bergen BH van, Hiemstra PS, Meis JF, Vlijmen-Willems IM van, Zeeuwen PL, Mulder J, Kramps HA, Ruissen F van, Schalkwijk J (1998) Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. J Invest Dermatol 111:996–1002Google Scholar
  89. Xiang NN, Di W-L (2012) Therapeutic interventions for Netherton syndrome. Expert Rev Dermatol 7:319–321CrossRefGoogle Scholar
  90. Yan AC, Honig PJ, Ming ME, Weber J, Shah KN (2010) The safety and efficacy of pimecrolimus, 1%, cream for the treatment of Netherton syndrome: results from an exploratory study. Arch Dermatol 146:57–62PubMedCrossRefGoogle Scholar
  91. Yang T, Liang D, Koch PJ, Hohl D, Kheradmand F, Overbeek PA (2004) Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice. Genes Dev 18:2354–2358PubMedCrossRefGoogle Scholar
  92. Zhao LP, Di Z, Zhang L, Wang L, Ma L, Lv Y, Hong Y, Wei H, Chen HD, Gao XH (2011) Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol 26:572–577PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of Genetic Skin DiseasesINSERM U781ParisFrance
  2. 2.Imagine Institute for Genetic DiseasesParisFrance
  3. 3.University René DescartesSorbonne Paris CitéParisFrance
  4. 4.Department of Genetics, Tour Lavoisier, 3ème étageHôpital Necker Enfants-maladesParis, cedex 15France

Personalised recommendations