Cell and Tissue Research

, Volume 352, Issue 1, pp 67–76 | Cite as

The molecular basis of induction and formation of tunneling nanotubes

Review

Abstract

Tunneling nanotubes (TNTs) and associated structures are recently recognized structures for intercellular communication. They are F-actin-containing thin protrusions of the plasma membrane of a cell and allow a direct physical connection to the plasma membranes of remote cells. TNTs and associated structures serve as mediators for intercellular transfer of organelles as well as membrane components and cytoplasmic molecules. Moreover, several pathogens have been shown to exploit these structures to spread among cells. Because of their contribution to normal cellular functions and importance in pathological conditions, studies on TNTs and related structures have accelerated over the past few years. These studies have revealed key molecules for their induction and/or formation; HIV Nef and M-Sec can induce the formation of TNTs in coordination with the remodeling of the actin cytoskeleton and vesicle trafficking.

Keywords

Tunneling nanotubes M-Sec/TNFaip2/B94 Rho small GTPase family Exocyst complex HIV Nef 

Supplementary material

441_2012_1518_MOESM1_ESM.mov (260 kb)
Supplemental video 1Time-lapse video microscopy of GFP-M-Sec-transfected HeLa cells. (MOV 259 kb)

References

  1. Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG (2012) Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 8:e1002762PubMedCrossRefGoogle Scholar
  2. Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1:533–540PubMedCrossRefGoogle Scholar
  3. Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R, Morales AP, Rodriguez JJ, Gilmore A, Canonico B, Papa S, Esposti MD (2011) Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 20:72–88CrossRefGoogle Scholar
  4. Bangham CR (2003) The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J Gen Virol 84:3177–3189PubMedCrossRefGoogle Scholar
  5. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G (2002) HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111:853–866PubMedCrossRefGoogle Scholar
  6. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179PubMedCrossRefGoogle Scholar
  7. Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM (2010) Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc Natl Acad Sci USA 107:5545–5550PubMedCrossRefGoogle Scholar
  8. Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 180:5779–5783PubMedGoogle Scholar
  9. Ciani E, Virgili M, Contestabile A (2002) Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones. J Neurochem 81:218–228PubMedCrossRefGoogle Scholar
  10. Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev 9:431–436CrossRefGoogle Scholar
  11. Eugenin EA, Branes MC, Berman JW, Saez JC (2003) TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 170:1320–1328PubMedGoogle Scholar
  12. Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 254:142–148PubMedCrossRefGoogle Scholar
  13. Fackler OT, Kienzle N, Kremmer E, Boese A, Schramm B, Klimkait T, Kücherer C, Mueller-Lantzsch N (1997) Association of human immunodeficiency virus Nef protein with actin is myristoylation dependent and influences its subcellular localization. Eur J Biochem 247:843–851PubMedCrossRefGoogle Scholar
  14. Fukumoto R, Dundr M, Nicot C, Adams A, Valeri VW, Samelson LE, Franchini G (2007) Inhibition of T-cell receptor signal transduction and viral expression by the linker for activation of T cells-interacting p12I protein of human T-cell leukemia/lymphoma virus type 1. J Virol 81:9088–9099PubMedCrossRefGoogle Scholar
  15. Fukumoto R, Andresen V, Bialuk I, Cecchinato V, Walser JC, Valeri VW, Nauroth JM, Gessain A, Nicot C, Franchini G (2009) In vivo genetic mutations define predominant functions of the human T-cell leukemia/lymphoma virus p12I protein. Blood 113:3726–3734PubMedCrossRefGoogle Scholar
  16. Galkina SI, Romanova JM, Stadnichuk VI, Molotkovsky JG, Sud'ina GF, Klein T (2009) Nitric oxide-induced membrane tubulovesicular extensions (cytonemes) of human neutrophils catch and hold Salmonella enterica serovar typhimurium at a distance from the cell surface. FEMS Immunol Med Microbiol 56:162–171PubMedCrossRefGoogle Scholar
  17. Galkina SI, Stadnichuk VI, Molotkovsky JG, Romanova JM, Sud'ina GF, Klein T (2010) Microbial alkaloid staurosporine induces formation of nanometer-wide membrane tubular extensions (cytonemes, membrane tethers) in human neutrophils. Cell Adhes Migr 4:32–38CrossRefGoogle Scholar
  18. Galkina SI, Romanova JM, Bragina EE, Tiganova IG, Stadnichuk VI, Alekseeva NV, Polyakov VY, Klein T (2011) Membrane tubules attach Salmonella typhimurium to eukaryotic cells and bacteria. FEMS Immunol Med Microbiol 61:114–124PubMedCrossRefGoogle Scholar
  19. Galkina SI, Fedorova NV, Serebryakova MV, Romanova JM, Golyshev SA, Stadnichuk VI, Baratova LA, Sud'ina GF, Klein T (2012) Proteome analysis identified human neutrophil membrane tubulovesicular extensions (cytonemes, membrane tethers) as bactericide trafficking. Biochim Biophys ActaGoogle Scholar
  20. Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–475PubMedCrossRefGoogle Scholar
  21. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336PubMedCrossRefGoogle Scholar
  22. Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett CC, Yeaman C, Ohno H (2009) M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11:1427–1432PubMedCrossRefGoogle Scholar
  23. He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21:537–542PubMedCrossRefGoogle Scholar
  24. Hung CH, Thomas L, Ruby CE, Atkins KM, Morris NP, Knight ZA, Scholz I, Barklis E, Weinberg AD, Shokat KM, Thomas G (2007) HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I. Cell Host Microbe 1:121–133PubMedCrossRefGoogle Scholar
  25. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765PubMedCrossRefGoogle Scholar
  26. Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT (2005) Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J 24:2064–2074PubMedCrossRefGoogle Scholar
  27. Kaminchik J, Margalit R, Yaish S, Drummer H, Amit B, Sarver N, Gorecki M, Panet A (1994) Cellular distribution of HIV type 1 Nef protein: identification of domains in Nef required for association with membrane and detergent-insoluble cellular matrix. AIDS Res Hum Retrovir 10:1003–1010PubMedCrossRefGoogle Scholar
  28. Kimura S, Hase K, Ohno H (2012) Tunneling nanotubes: emerging view of their molecular components and formation mechanisms. Exp Cell Res 318:1699–1706PubMedCrossRefGoogle Scholar
  29. Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W (2005) Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 170:317–325PubMedCrossRefGoogle Scholar
  30. Liu J, Zhao Y, Sun Y, He B, Yang C, Svitkina T, Goldman YE, Guo W (2012) Exo70 stimulates the Arp2/3 complex for lamellipodia formation and directional cell migration. Curr BiolGoogle Scholar
  31. Lokar M, Iglič A, Veranic P (2010) Protruding membrane nanotubes: attachment of tubular protrusions to adjacent cells by several anchoring junctions. Protoplasma 246:81–87PubMedCrossRefGoogle Scholar
  32. Luchetti F, Canonico B, Arcangeletti M, Guescini M, Cesarini E, Stocchi V, Degli Esposti M, Papa S (2012) Fas signalling promotes intercellular communication in T cells. PLoS One 7:e35766PubMedCrossRefGoogle Scholar
  33. Martinez AD, Eugenin EA, Branes MC, Bennett MV, Saez JC (2002) Identification of second messengers that induce expression of functional gap junctions in microglia cultured from newborn rats. Brain Res 943:191–201PubMedCrossRefGoogle Scholar
  34. Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4:66–72PubMedCrossRefGoogle Scholar
  35. Mukerji J, Olivieri KC, Misra V, Agopian KA, Gabuzda D (2012) Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation. Retrovirology 9:33PubMedCrossRefGoogle Scholar
  36. Nguyen H, Ramana CV, Bayes J, Stark GR (2001) Roles of phosphatidylinositol 3-kinase in interferon-gamma-dependent phosphorylation of STAT1 on serine 727 and activation of gene expression. J Biol Chem 276:33361–33368PubMedCrossRefGoogle Scholar
  37. Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S, Piguet V (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118:4841–4852PubMedCrossRefGoogle Scholar
  38. Nobile C, Rudnicka D, Hasan M, Aulner N, Porrot F, Machu C, Renaud O, Prevost MC, Hivroz C, Schwartz O, Sol-Foulon N (2010) HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. J Virol 84:2282–2293PubMedCrossRefGoogle Scholar
  39. Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 96:2122–2128PubMedCrossRefGoogle Scholar
  40. Önfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513PubMedGoogle Scholar
  41. Önfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483PubMedGoogle Scholar
  42. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100:8407–8411PubMedCrossRefGoogle Scholar
  43. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104:11002–11007PubMedCrossRefGoogle Scholar
  44. Oviedo-Orta E, Howard Evans W (2004) Gap junctions and connexin-mediated communication in the immune system. Biochim Biophys Acta 1662:102–112PubMedCrossRefGoogle Scholar
  45. Pasquier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, Webb G, Le Foll F (2012) Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 287:7374–7387PubMedCrossRefGoogle Scholar
  46. Ranzinger J, Rustom A, Abel M, Leyh J, Kihm L, Witkowski M, Scheurich P, Zeier M, Schwenger V (2011) Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses. PLoS One 6:e29537PubMedCrossRefGoogle Scholar
  47. Ruckes T, Saul D, Van Snick J, Hermine O, Grassmann R (2001) Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309. Blood 98:1150–1159PubMedCrossRefGoogle Scholar
  48. Rustom A (2009) Hen or egg?: some thoughts on tunneling nanotubes. Ann NY Acad Sci 1178:129–136PubMedCrossRefGoogle Scholar
  49. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010PubMedCrossRefGoogle Scholar
  50. Saito T, Yokosuka T (2006) Immunological synapse and microclusters: the site for recognition and activation of T cells. Curr Opin Immunol 18:305–313PubMedCrossRefGoogle Scholar
  51. Saksela K, Cheng G, Baltimore D (1995) Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 14:484–491PubMedGoogle Scholar
  52. Sarma V, Wolf FW, Marks RM, Shows TB, Dixit VM (1992) Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J Immunol 148:3302–3312PubMedGoogle Scholar
  53. Scott G, Leopardi S, Printup S, Madden BC (2002) Filopodia are conduits for melanosome transfer to keratinocytes. J Cell Sci 115:1441–1451PubMedGoogle Scholar
  54. Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315PubMedCrossRefGoogle Scholar
  55. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Önfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:211–219PubMedCrossRefGoogle Scholar
  56. Sowinski S, Alakoskela JM, Jolly C, Davis DM (2011) Optimized methods for imaging membrane nanotubes between T cells and trafficking of HIV-1. Methods 53:27–33PubMedCrossRefGoogle Scholar
  57. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283–1288PubMedCrossRefGoogle Scholar
  58. Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM (2000) Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 275:9725–9733PubMedCrossRefGoogle Scholar
  59. Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, Ohta Y (2002) The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4:73–78PubMedCrossRefGoogle Scholar
  60. Twiss JL, Fainzilber M (2009) Ribosomes in axons–scrounging from the neighbors? Trends Cell Biol 19:236–243PubMedCrossRefGoogle Scholar
  61. Van Prooyen N, Gold H, Andresen V, Schwartz O, Jones K, Ruscetti F, Lockett S, Gudla P, Venzon D, Franchini G (2010) Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA 107:20738–20743PubMedCrossRefGoogle Scholar
  62. Veranic P, Lokar M, Schutz GJ, Weghuber J, Wieser S, Hagerstrand H, Kralj-Iglic V, Iglic A (2008) Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 95:4416–4425PubMedCrossRefGoogle Scholar
  63. Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18:732–742PubMedCrossRefGoogle Scholar
  64. Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23:309–318PubMedCrossRefGoogle Scholar
  65. Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, Dyer WB, Ketas TJ, Chadburn A, Cohen-Gould L, Knowles DM, Chiu A, Sanders RW, Chen K, Cerutti A (2009) HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 10:1008–1017PubMedCrossRefGoogle Scholar
  66. Yasuda K, Khandare A, Burianovskyy L, Maruyama S, Zhang F, Nasjletti A, Goligorsky MS (2011) Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 3:597–608PubMedGoogle Scholar
  67. Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118:3695–3703PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratory of Histology and Cytology, Graduate School of MedicineHokkaido UniversitySapporoJapan
  2. 2.Laboratory for Epithelial ImmunobiologyResearch Center for Allergy and Immunology, RIKENYokohamaJapan
  3. 3.Laboratory for Mucosal Barriology, International R&D Center for MucoVac, The Institute for Medical SciencesThe University of TokyoTokyoJapan
  4. 4.Laboratory for Bioenvironmental EpigeneticsResearch Center for Allergy and Immunology, RIKENYokohamaJapan
  5. 5.PRESTO, Japan Science and Technology AgencyTokyoJapan
  6. 6.Division of Immunobiology, Department of Supramolecular Biology, Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations