Cell and Tissue Research

, Volume 350, Issue 2, pp 189–197

Regenerating cardiac cells: insights from the bench and the clinic



A major challenge in cardiovascular regenerative medicine is the development of novel therapeutic strategies to restore the function of cardiac muscle in the failing heart. The heart has historically been regarded as a terminally differentiated organ that does not have the potential to regenerate. This concept has been updated by the discovery of cardiac stem and progenitor cells that reside in the adult mammalian heart. Whereas diverse types of adult cardiac stem or progenitor cells have been described, we still do not know whether these cells share a common origin. A better understanding of the physiology of cardiac stem and progenitor cells should advance the successful use of regenerative medicine as a viable therapy for heart disease. In this review, we summarize current knowledge of the various adult cardiac stem and progenitor cell types that have been discovered. We also review clinical trials presently being undertaken with adult stem cells to repair the injured myocardium in patients with coronary artery disease.


Stem cells Progenitor cells Cardiac Cardiomyoctyes Regeneration Human 


  1. Ahmadian Kia N, Bahrami AR et al (2010) Comparative analysis of chemokine receptor’s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci 44:178–185PubMedCrossRefGoogle Scholar
  2. Asahara T, Murohara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  3. Assmus B, Schachinger V et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017PubMedCrossRefGoogle Scholar
  4. Assmus B, Honold J et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232PubMedCrossRefGoogle Scholar
  5. Bearzi C, Rota M et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073PubMedCrossRefGoogle Scholar
  6. Beltrami AP, Barlucchi L et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedCrossRefGoogle Scholar
  7. Blin G, Nury D et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139PubMedCrossRefGoogle Scholar
  8. Bolli R, Chugh AR et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857PubMedCrossRefGoogle Scholar
  9. Buckingham M, Meilhac S et al (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835PubMedCrossRefGoogle Scholar
  10. Cai CL, Liang X et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889PubMedCrossRefGoogle Scholar
  11. Caprioli A, Koyano-Nakagawa N et al (2011) Nkx2–5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis. Circulation 123:1633–1641PubMedCrossRefGoogle Scholar
  12. Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, Hung SH, Fu YC, Wang YH, Wang HI, Wang GJ, Kang L, Chang JK (2011) Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 16:582–593CrossRefGoogle Scholar
  13. Chimenti I, Smith RR et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980PubMedCrossRefGoogle Scholar
  14. Fazel S, Cimini M et al (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116:1865–1877PubMedCrossRefGoogle Scholar
  15. Ferreira-Martins J, Ogorek B et al (2012) Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res 110:701–715PubMedCrossRefGoogle Scholar
  16. Franco D, Moreno N et al (2007) Non-resident stem cell populations in regenerative cardiac medicine. Cell Mol Life Sci 64:683–691PubMedCrossRefGoogle Scholar
  17. Hare JM, Traverse JH et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286PubMedCrossRefGoogle Scholar
  18. Hill JM, Zalos G et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600PubMedCrossRefGoogle Scholar
  19. Hu Y, Davison F et al (2003) Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation 108:3122–3127PubMedCrossRefGoogle Scholar
  20. Hu S, Liu S et al (2011) Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol 57:2409–2415PubMedCrossRefGoogle Scholar
  21. Ikegame Y, Yamashita K et al (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13:675–685PubMedCrossRefGoogle Scholar
  22. Janssens S, Dubois C et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367:113–121PubMedCrossRefGoogle Scholar
  23. Kang HJ, Kim HS et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363:751–756PubMedCrossRefGoogle Scholar
  24. Kawase Y, Ladage D et al (2011) Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol 57:1169–1180PubMedCrossRefGoogle Scholar
  25. Kocher AA, Schuster MD et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436PubMedCrossRefGoogle Scholar
  26. Koninckx R, Daniels A et al (2010) Mesenchymal stem cells or cardiac progenitors for cardiac repair? A comparative study. Cell Mol Life Sci 68:2141–2156PubMedCrossRefGoogle Scholar
  27. Kubo H, Jaleel N et al (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118:649–657PubMedCrossRefGoogle Scholar
  28. Laugwitz KL, Moretti A et al (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135:193–205PubMedCrossRefGoogle Scholar
  29. Leri A (2009) Human cardiac stem cells: the heart of a truth. Circulation 120:2515–2518PubMedCrossRefGoogle Scholar
  30. Lunde K, Solheim S et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355:1199–1209PubMedCrossRefGoogle Scholar
  31. Madonna R, De Caterina R (2009) Adipose tissue: a new source for cardiovascular repair. J Cardiovasc Med (Hagerstown) 11(2):71–80CrossRefGoogle Scholar
  32. Makkar RR, Smith RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904PubMedCrossRefGoogle Scholar
  33. Martin-Puig S, Wang Z et al (2008) Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2:320–331PubMedCrossRefGoogle Scholar
  34. Meyer GP, Wollert KC et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294PubMedCrossRefGoogle Scholar
  35. Moretti A, Caron L et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165PubMedCrossRefGoogle Scholar
  36. Murry CE, Soonpaa MH et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRefGoogle Scholar
  37. Oh H, Bradfute SB et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318PubMedCrossRefGoogle Scholar
  38. Orlic D, Kajstura J et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  39. Pittenger MF, Mackay AM et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  40. Planat-Benard V, Menard C et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229PubMedCrossRefGoogle Scholar
  41. Rangappa S, Fen C et al (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779PubMedCrossRefGoogle Scholar
  42. Rosenzweig A (2006) Cardiac cell therapy-mixed results from mixed cells. N Engl J Med 355:1274–1277PubMedCrossRefGoogle Scholar
  43. Sandstedt J, Jonsson M et al (2010) C-kit+ CD45-cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Res Cardiol 105:545–556PubMedCrossRefGoogle Scholar
  44. Scarabelli TM, Gottlieb RA (2004) Functional and clinical repercussions of myocyte apoptosis in the multifaceted damage by ischemia/reperfusion injury: old and new concepts after 10 years of contributions. Cell Death Differ 11 (Suppl 2):S144–S152PubMedCrossRefGoogle Scholar
  45. Schachinger V, Assmus B et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44:1690–1699PubMedCrossRefGoogle Scholar
  46. Schachinger V, Erbs S et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221PubMedCrossRefGoogle Scholar
  47. Smith RR, Barile L et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908PubMedCrossRefGoogle Scholar
  48. Stamm C, Westphal B et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46PubMedCrossRefGoogle Scholar
  49. Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104PubMedCrossRefGoogle Scholar
  50. Struthers AD (2005) Pathophysiology of heart failure following myocardial infarction. Heart 91 (Suppl 2):ii14–ii16PubMedCrossRefGoogle Scholar
  51. Tallini YN, Greene KS et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci USA 106:1808–1813PubMedCrossRefGoogle Scholar
  52. Tang XL, Rokosh G et al (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305PubMedCrossRefGoogle Scholar
  53. Tendera M, Wojakowski W et al (2009) Intracoronary infusion of bone marrow-derived selected CD34+ CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. Eur Heart J 30:1313–1321PubMedCrossRefGoogle Scholar
  54. Toma C, Pittenger MF et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98PubMedCrossRefGoogle Scholar
  55. van Ramshorst J, Bax JJ et al (2009) Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301:1997–2004PubMedCrossRefGoogle Scholar
  56. Vidal MA, Walker NJ, Napoli E, Borjesson DL (2011) Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue. Stem Cells Dev 21:273-83PubMedCrossRefGoogle Scholar
  57. Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19:279–289PubMedCrossRefGoogle Scholar
  58. Visconti RP, Ebihara Y et al (2006) An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ Res 98:690–696PubMedCrossRefGoogle Scholar
  59. Wollert KC, Meyer GP et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148PubMedCrossRefGoogle Scholar
  60. Wu SM, Fujiwara Y et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150PubMedCrossRefGoogle Scholar
  61. Yao K, Huang R et al (2008) Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart 94:1147–1153PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest HospitalThe Third Military Medical UniversityChongqingChina
  2. 2.Institute of Cardiovascular Diseases of PLA, Xinqiao HospitalThe Third Military Medical UniversityChongqingChina

Personalised recommendations