Advertisement

Cell and Tissue Research

, Volume 350, Issue 2, pp 239–250 | Cite as

Characterization of a plasma membrane Ca2+ ATPase expressed in olfactory receptor neurons of the moth Spodoptera littoralis

  • Adrien François
  • Françoise Bozzolan
  • Elodie Demondion
  • Nicolas Montagné
  • Philippe Lucas
  • Stéphane Debernard
Regular Article

Abstract

The response of insect olfactory receptor neurons (ORNs) involves an increase in intracellular Ca2+ concentration, as in vertebrate ORNs. In order to decipher the Ca2+ clearance mechanisms in insect ORNs, we have investigated the presence of a plasma membrane Ca2+ ATPase (PMCA) in the peripheral olfactory system of the moth Spodoptera littoralis. From an analysis of a male antennal expressed-sequence-tag database combined with a strategy of 5′/3′ rapid amplification of cDNA ends plus the polymerase chain reaction, we have cloned a full-length cDNA encoding a PMCA. In adult males, the PMCA transcript has been found in various tissues, including the antennae in which its presence has been detected in the sensilla trichodea, and in cultured ORNs. The PMCA gene is slightly expressed at the end of the pupal stage, reaches a maximum at emergence and is maintained at a high level during the adult period. Taken together, these results provide, for the first time, molecular evidence for the putative participation of a PMCA in signalling pathways responsible for the establishment and functioning of the insect peripheral olfactory system.

Keywords

Plasma membrane calcium ATPase Olfactory transduction Calcium clearance Olfactory receptor neuron Spodoptera littoralis (Insecta) 

Supplementary material

441_2012_1483_Fig6_ESM.jpg (58 kb)
Table S1

Primer sequences. List of primers used for 5′/3′ rapid amplification of cDNA ends (RACE) with the polymerase chain reaction (PCR), reverse transcription with PCR (RT-PCR) and quantitative PCR (qPCR) analyses. (JPEG 57 kb)

441_2012_1483_MOESM1_ESM.tif (5.8 mb)
High resolution image (TIFF 5915 kb)
441_2012_1483_Fig7_ESM.jpg (115 kb)
Table S2

Accession numbers of amino acid sequences of plasma membrane Ca2+ ATPase (PMCA)(JPEG 115 kb)

441_2012_1483_MOESM2_ESM.tif (16.5 mb)
High resolution image (TIFF 16907 kb)

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105PubMedCrossRefGoogle Scholar
  2. Anderson P, Hansson BS, Lofqvist J (1995) Plant-odour-specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20:189–198CrossRefGoogle Scholar
  3. Antolin S, Matthews HR (2007) The effect of external sodium concentration on sodium-calcium exchange in frog olfactory receptor cells. J Physiol (Lond) 581:495–503CrossRefGoogle Scholar
  4. Antolin S, Reisert J, Matthews HR (2010) Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia. J Gen Physiol 135:367–378PubMedCrossRefGoogle Scholar
  5. Audinat E, Lambolez B, Rossier J (1996) Functional and molecular analysis of glutamate-gated channels by patch-clamp and RT-PCR at the single cell level. Neurochem Int 28:119–136PubMedCrossRefGoogle Scholar
  6. Brandt PC, Sisken JE, Neve RL, Vanaman TC (1996) Blockade of plasma membrane calcium pumping ATPase isoform I impairs nerve growth factor-induced neurite extension in pheochromocytoma cells. Proc Natl Acad Sci USA 93:13843–13848PubMedCrossRefGoogle Scholar
  7. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378PubMedCrossRefGoogle Scholar
  8. Brini M, Carafoli E (2011) The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3:1–15CrossRefGoogle Scholar
  9. Brodin P, Falchetto R, Vorherr T, Carafoli E (1992) Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem 204:939–946PubMedCrossRefGoogle Scholar
  10. Carafoli E (1991) The calcium pumping ATPase of the plasma membrane. Annu Rev Physiol 53:531–547PubMedCrossRefGoogle Scholar
  11. Castillo K, Delgado R, Bacigalupo J (2007) Plasma membrane Ca2+-ATPase in the cilia of olfactory receptor neurons: possible role in Ca2+ clearance. Eur J Neurosci 26:2524–2531PubMedCrossRefGoogle Scholar
  12. Chouquet B, Bozzolan F, Solvar M, Duportets L, Jacquin-Joly E, Lucas P, Debernard S (2008) Molecular cloning and expression patterns of a putative olfactory diacylglycerol kinase from the noctuid moth Spodoptera littoralis. Insect Mol Biol 17:485–493PubMedCrossRefGoogle Scholar
  13. Chouquet B, Debernard S, Bozzolan F, Solvar M, Maibeche-Coisne M, Lucas P (2009) A TRP channel is expressed in Spodoptera littoralis antennae and is potentially involved in insect olfactory transduction. Insect Mol Biol 18:213–222PubMedCrossRefGoogle Scholar
  14. Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E (2008) The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 476:65–74PubMedCrossRefGoogle Scholar
  15. Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S, Rosell G, Maibeche-Coisne M (2011) Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant. PLoS One 5:e15026CrossRefGoogle Scholar
  16. Furuta H, Luo L, Hepler K, Ryan AF (1998) Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hear Res 123:10–26PubMedCrossRefGoogle Scholar
  17. Gopinath RM, Vincenzi FF (1977) Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Biochem Biophys Res Commun 77:1203–1209PubMedCrossRefGoogle Scholar
  18. Gu Y, Lucas P, Rospars J-P (2009) Computational model of the insect pheromone transduction cascade. PLoS Comput Biol 53:e1000321CrossRefGoogle Scholar
  19. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  20. Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA 102:14075–14079PubMedCrossRefGoogle Scholar
  21. Jacquin-Joly E, Lucas P (2005) Pheromone reception and transduction: mammals and insects illustrate converging mechanisms across phyla. Curr Top Neurochem 4:75–105Google Scholar
  22. Jacquin-Joly E, Francois MC, Burnet M, Lucas P, Bourrat F, Maida R (2002) Expression pattern in the antennae of a newly isolated lepidopteran Gq protein alpha subunit cDNA. Eur J Biochem 269:2133–2142PubMedCrossRefGoogle Scholar
  23. Jarrett HW, Reid TB, Penniston JT (1977) Concurrent inhibition of the low-affinity Ca2+-stimulated ATPase and MgATP-dependent endocytosis in erythrocyte ghosts by N-naphthylmaleimide and carbonylcyanide-m-chlorophenylhydrazone. Arch Biochem Biophys 183:498–510PubMedCrossRefGoogle Scholar
  24. Kaissling K-E (2004) Physiology of pheromone reception in insects (an example of moths). ANIR 6:73–91Google Scholar
  25. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900PubMedCrossRefGoogle Scholar
  26. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200PubMedGoogle Scholar
  27. Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21:139–151PubMedCrossRefGoogle Scholar
  28. Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure. Plenum, New York, pp 477–516CrossRefGoogle Scholar
  29. Kostal L, Lansky P, Rospars JP (2008) Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Comput Biol 4:e1000053PubMedCrossRefGoogle Scholar
  30. Kramer E (1986) Turbulent diffusion and pheromone triggered anemotaxis. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon, Oxford, pp 58–67Google Scholar
  31. Krizaj D, Demarco SJ, Johnson J, Strehler EE, Copenhagen DR (2002) Cell-specific expression of plasma membrane calcium ATPase isoforms in retinal neurons. J Comp Neurol 451:1–21PubMedCrossRefGoogle Scholar
  32. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714PubMedCrossRefGoogle Scholar
  33. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320PubMedCrossRefGoogle Scholar
  34. Legeai F, Malpel S, Montagne N, Monsempes C, Cousserans F, Merlin C, Francois MC, Maibeche-Coisne M, Gavory F, Poulain J, Jacquin-Joly E (2011) An expressed sequence tag collection from the male antennae of the noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genom 12:86CrossRefGoogle Scholar
  35. Ljungberg H, Anderson P, Hansson BS (1993) Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J Insect Physiol 39:253–260CrossRefGoogle Scholar
  36. Lnenicka GA, Grizzaffi J, Lee B, Rumpal N (2006) Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. J Neurosci 26:12283–12293PubMedCrossRefGoogle Scholar
  37. Lucas P, Nagnan-Le Meillour P (1997) Primary culture of antennal cells of Mamestra brassicae: morphology of cell types and evidence for biosynthesis of pheromone-binding proteins in vitro. Cell Tissue Res 289:375–382PubMedCrossRefGoogle Scholar
  38. Lucas P, Shimahara T (2002) Voltage- and calcium-activated currents in cultured olfactory receptor neurons of male Mamestra brassicae (Lepidoptera). Chem Senses 27:599–610PubMedCrossRefGoogle Scholar
  39. Marion-Poll F, Tobin TR (1992) Temporal coding of pheromone pulses and trains in Manduca sexta. J Comp Physiol 171:505–512CrossRefGoogle Scholar
  40. Mayer U, Ungerer N, Klimmeck D, Warnken U, Schnolzer M, Frings S, Mohrlen F (2008) Proteomic analysis of a membrane preparation from rat olfactory sensory cilia. Chem Senses 33:145–162PubMedCrossRefGoogle Scholar
  41. Menco BP (1984) Ciliated and microvillous structures of rat olfactory and nasal respiratory epithelia. A study using ultra-rapid cryo-fixation followed by freeze-substitution or freeze-etching. Cell Tissue Res 235:225–241PubMedCrossRefGoogle Scholar
  42. Penniston JT, Enyedi A (1998) Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165:101–109PubMedCrossRefGoogle Scholar
  43. Pézier A, Acquistapace A, Renou M, Rospars J-P, Lucas P (2007) Ca2+ stabilizes the membrane potential of moth olfactory receptor neurons at rest and is essential for their fast repolarization. Chem Senses 32:305–317PubMedCrossRefGoogle Scholar
  44. Pézier A, Grauso M, Acquistapace A, Monsempes C, Rospars J-P, Lucas P (2010) Calcium activates a chloride conductance likely involved in olfactory receptor neuron repolarisation in the moth Spodoptera littoralis. J Neurosci 30:6323–6333PubMedCrossRefGoogle Scholar
  45. Pophof B (1997) Olfactory responses recorded from sensilla coeloconica of the silkmoth Bombyx mori. Physiol Entomol 22:239–248CrossRefGoogle Scholar
  46. Pottorf WJ, Thayer SA (2002) Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons. J Neurochem 83:1002–1008PubMedCrossRefGoogle Scholar
  47. Quero C, Lucas P, Renou M, Guerrero A (1996) Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. J Chem Ecol 22:1087–1102CrossRefGoogle Scholar
  48. Reisert J, Matthews HR (1998) Na+-dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J Gen Physiol 112:529–535PubMedCrossRefGoogle Scholar
  49. Rogers ME, Steinbrecht RA, Vogt RG (2001) Expression of SNMP-1 in olfactory neurons and sensilla of male and female antennae of the silkmoth Antheraea polyphemus. Cell Tissue Res 303:433–446PubMedCrossRefGoogle Scholar
  50. Rumbo ER, Kaissling K-E (1989) Temporal resolution of odour pulses by three types of pheromone receptor cells in Antheraea polyphemus. J Comp Physiol A 165:281–291CrossRefGoogle Scholar
  51. Saidu SP, Weeraratne SD, Valentine M, Delay R, Van Houten JL (2009) Role of plasma membrane calcium ATPases in calcium clearance from olfactory sensory neurons. Chem Senses 34:349–358PubMedCrossRefGoogle Scholar
  52. Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 101:16653–16658PubMedCrossRefGoogle Scholar
  53. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006PubMedCrossRefGoogle Scholar
  54. Shields VD, Hildebrand JG (2001) Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc Res Tech 55:307–329PubMedCrossRefGoogle Scholar
  55. Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440PubMedCrossRefGoogle Scholar
  56. Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780PubMedCrossRefGoogle Scholar
  57. Stengl M (1994) Inositol-triphosphate-dependent calcium currents precede cation currents in insect olfactory receptor neurons in vitro. J Comp Physiol A 174:187–194PubMedCrossRefGoogle Scholar
  58. Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci 4:1–15CrossRefGoogle Scholar
  59. Stephan AB, Tobochnik S, Dibattista M, Wall CM, Reisert J, Zhao H (2012) The Na+/Ca2+ exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat Neurosci 15:131–137CrossRefGoogle Scholar
  60. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394PubMedCrossRefGoogle Scholar
  61. Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50PubMedGoogle Scholar
  62. Strehler EE, Filoteo AG, Penniston JT, Caride AJ (2007) Plasma-membrane Ca2+ pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans 35:919–922PubMedCrossRefGoogle Scholar
  63. Waterhouse RM, Zdobnov EM, Tegenfeldt F, Li J, Kriventseva EV (2011) OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Res 39:D283–D288PubMedCrossRefGoogle Scholar
  64. Weeraratne SD, Valentine M, Cusick M, Delay R, Van Houten JL (2006) Plasma membrane calcium pumps in mouse olfactory sensory neurons. Chem Senses 31:725–730PubMedCrossRefGoogle Scholar
  65. Wegener JW, Tareilus E, Breer H (1992) Characterization of calcium-dependent potassium channels in antennal receptor neurones of Locusta migratoria. J Insect Physiol 38:237–248CrossRefGoogle Scholar
  66. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011PubMedCrossRefGoogle Scholar
  67. Zenisek D, Matthews G (2000) The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 25:229–237PubMedCrossRefGoogle Scholar
  68. Zhang S, Maida R, Steinbrecht RA (2001) Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera). Chem Senses 26:885–896PubMedCrossRefGoogle Scholar
  69. Zufall F, Stengl M, Franke C, Hildebrand JG, Hatt H (1991) Ionic currents of cultured olfactory receptor neurons from antennae of male Manduca sexta. J Neurosci 11:956–965PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Adrien François
    • 1
    • 2
  • Françoise Bozzolan
    • 1
  • Elodie Demondion
    • 2
  • Nicolas Montagné
    • 1
  • Philippe Lucas
    • 2
  • Stéphane Debernard
    • 1
  1. 1.UPMC - Université Paris 6, UMR-A 1272 Physiologie de l’Insecte: Signalisation et CommunicationParis cedex 05France
  2. 2.INRA, UMR-A 1272 Physiologie de l’Insecte: Signalisation et CommunicationVersailles cedexFrance

Personalised recommendations