Cell and Tissue Research

, Volume 349, Issue 3, pp 679–690 | Cite as

Characterization and importance of microRNAs in mammalian gonadal functions

  • M. M. Hossain
  • M. M. H. Sohel
  • K. Schellander
  • D. TesfayeEmail author


Recent progress in high throughput sequencing and bioinformatic analysis and other biochemical methods have fuelled our appreciation for the important role of microRNAs (miRNAs) in disease, fertility and development. These tiny RNAs were found to be potentially involved in various aspects of cellular processes of reproductive tissues by posttranscriptional regulation of protein coding genes. Mammalian gonads which exhibit strictly regulated spatiotemporal gene expression patterns are also known to express unique sets of miRNAs and genes involved in the miRNA biogenetic pathway. Studies on miRNAs and their associated processing enzymes have evidenced the contribution of these small regulatory RNAs to germ cell differentiation, post-meiotic male germ cell function and growth, and development and maturation of oocytes through pertaining tightly regulated gene expression. The existence, preferential and temporal expression of miRNAs and their processing machinery genes in different stages of testicular and ovarian cellular development have evidenced the potential role of miRNAs in testicular and ovarian physiology. MiRNAs are also found to be associated with functional regulation of gonadal somatic cells, namely Leydig cells and Sertoli cells in testis and granulosa cells/cumulus cells in the ovary in steroid synthesis. Here, we review the recent works on the involvement and diverse roles of miRNAs in the development and physiology of gonadal cells in mammalian reproduction.


microRNAs Gonads Testis Ovary Fertility 


  1. Abd El Naby WS, Hagos TH, Hossain MM, Salilew-Wondim D, Gad AY, Rings F, Cinar MU, Tholen E, Looft C, Schellander K, Hoelker M, Tesfaye D (2011) Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote (2011) 1-21Google Scholar
  2. Ahn HW, Morin RD, Zhao H, Harris RA, Coarfa C, Chen ZJ, Milosavljevic A, Marra MA, Rajkovic A (2010) MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol Hum Reprod 16:463–471PubMedCrossRefGoogle Scholar
  3. Albertini DF, Barrett SL (2003) Oocyte-somatic cell communication. Reprod Suppl 61:49–54PubMedGoogle Scholar
  4. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  5. Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, Chen Y, Cao X, Jiang C, Yan W, Xu C (2012) microRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting the E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem M111.328054Google Scholar
  6. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U, Gilad S, Hurban P, Karov Y, Lobenhofer EK, Sharon E, Shiboleth YM, Shtutman M, Bentwich Z, Einat P (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14:2486–2494PubMedCrossRefGoogle Scholar
  7. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770PubMedCrossRefGoogle Scholar
  8. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24PubMedCrossRefGoogle Scholar
  9. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217PubMedCrossRefGoogle Scholar
  10. Bettegowda A, Lee KB, Smith GW (2008) Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod Fertil Dev 20:45–53PubMedCrossRefGoogle Scholar
  11. Bjork JK, Sandqvist A, Elsing AN, Kotaja N, Sistonen L (2010) miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 137:3177–3184PubMedCrossRefGoogle Scholar
  12. Bonnet A, Dalbies-Tran R, Sirard MA (2008) Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. Reproduction 135:119–128PubMedCrossRefGoogle Scholar
  13. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101PubMedCrossRefGoogle Scholar
  14. Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP (2010) Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 16:720–731PubMedCrossRefGoogle Scholar
  15. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85PubMedCrossRefGoogle Scholar
  16. Buchold GM, Coarfa C, Kim J, Milosavljevic A, Gunaratne PH, Matzuk MM (2010) Analysis of microRNA expression in the prepubertal testis. PLoS One 5:e15317PubMedCrossRefGoogle Scholar
  17. Carletti MZ, Fiedler SD, Christenson LK (2010) MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 83:286–295PubMedCrossRefGoogle Scholar
  18. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744PubMedCrossRefGoogle Scholar
  19. Choi Y, Qin Y, Berger MF, Ballow DJ, Bulyk ML, Rajkovic A (2007) Microarray analyses of newborn mouse ovaries lacking Nobox. Biol Reprod 77:312–319PubMedCrossRefGoogle Scholar
  20. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328:1694–1698PubMedCrossRefGoogle Scholar
  21. Dai L, Tsai-Morris CH, Sato H, Villar J, Kang JH, Zhang J, Dufau ML (2011) Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 286:44306–44318PubMedCrossRefGoogle Scholar
  22. Eddy EM (1998) Regulation of gene expression during spermatogenesis. Semin Cell Dev Biol 9:451–457PubMedCrossRefGoogle Scholar
  23. Eddy EM (2002) Male germ cell gene expression. Recent Prog Horm Res 57:103–128PubMedCrossRefGoogle Scholar
  24. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379PubMedCrossRefGoogle Scholar
  25. Fiedler SD, Carletti MZ, Hong X, Christenson LK (2008) Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 79:1030–1037PubMedCrossRefGoogle Scholar
  26. Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017PubMedCrossRefGoogle Scholar
  27. Foley NH, Bray IM, Tivnan A, Bryan K, Murphy DM, Buckley PG, Ryan J, O'Meara A, O'Sullivan M, Stallings RL (2010) MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 9:83PubMedCrossRefGoogle Scholar
  28. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789PubMedCrossRefGoogle Scholar
  29. Golestaneh N, Beauchamp E, Fallen S, Kokkinaki M, Uren A, Dym M (2009) Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction 138:151–162PubMedCrossRefGoogle Scholar
  30. Gonzalez G, Behringer RR (2009) Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev 76:678–688PubMedCrossRefGoogle Scholar
  31. Gonzalez-Gonzalez E, Lopez-Casas PP, del Mazo J (2008) The expression patterns of genes involved in the RNAi pathways are tissue-dependent and differ in the germ and somatic cells of mouse testis. Biochim Biophys Acta 1779:306–311PubMedCrossRefGoogle Scholar
  32. Grimes SR (2004) Testis-specific transcriptional control. Gene 343:11–22PubMedCrossRefGoogle Scholar
  33. Hayashi K, de Sousa C, Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O'Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3:e1738PubMedCrossRefGoogle Scholar
  34. Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK (2008) Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149:6207–6212PubMedCrossRefGoogle Scholar
  35. Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D (2009) Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 10:443PubMedCrossRefGoogle Scholar
  36. Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, Li R, Wang L, Sun T, Hang S, Gao Y, Hou M, Zhong J (2011) Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int J Biol Sci 7:1016–1026PubMedCrossRefGoogle Scholar
  37. Inselman AL, Nakamura N, Brown PR, Willis WD, Goulding EH, Eddy EM (2010) Heat shock protein 2 promoter drives Cre expression in spermatocytes of transgenic mice. Genesis 48:114–120PubMedGoogle Scholar
  38. Kaneda M, Tang F, O'Carroll D, Lao K, Surani MA (2009) Essential role for Argonaute2 protein in mouse oogenesis. Epigenet Chromatin 2:9CrossRefGoogle Scholar
  39. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMedCrossRefGoogle Scholar
  40. Kim VN (2004) MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol 14:156–159PubMedCrossRefGoogle Scholar
  41. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385PubMedCrossRefGoogle Scholar
  42. Kim YJ, Ku SY, Rosenwaks Z, Liu HC, Chi SW, Kang JS, Lee WJ, Jung KC, Kim SH, Choi YM, Kim JG, Moon SY (2010) MicroRNA expression profiles are altered by gonadotropins and vitamin C status during in vitro follicular growth. Reprod Sci 17:1081–1089PubMedCrossRefGoogle Scholar
  43. Kimble J (2011) Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb Perspect Biol 3:a002683PubMedCrossRefGoogle Scholar
  44. Kleene KC (2003) Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res 103:217–224PubMedCrossRefGoogle Scholar
  45. Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821PubMedCrossRefGoogle Scholar
  46. Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8:85–90PubMedCrossRefGoogle Scholar
  47. Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P (2006) The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103:2647–2652PubMedCrossRefGoogle Scholar
  48. Lai EC (2003) microRNAs: runts of the genome assert themselves. Curr Biol 13:R925–R936PubMedCrossRefGoogle Scholar
  49. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167PubMedCrossRefGoogle Scholar
  50. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862PubMedCrossRefGoogle Scholar
  51. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670PubMedCrossRefGoogle Scholar
  52. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMedCrossRefGoogle Scholar
  53. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedCrossRefGoogle Scholar
  54. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–532PubMedCrossRefGoogle Scholar
  55. Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK (2010) The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 315:63–73PubMedCrossRefGoogle Scholar
  56. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  57. Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, Wang X, Chen L, Ma J, Mu Z, Jiang AA, Zhu L, Lang Q, Zhou X, Wang J, Zeng W, Li N, Li K, Gao X, Li X (2011) Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci 7:1045–1055PubMedCrossRefGoogle Scholar
  58. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, Li X, Sun F (2009) Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol 7:13PubMedCrossRefGoogle Scholar
  59. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  60. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004a) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441PubMedCrossRefGoogle Scholar
  61. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004b) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9744PubMedCrossRefGoogle Scholar
  62. Liu HC, Tang Y, He Z, Rosenwaks Z (2010) Dicer is a key player in oocyte maturation. J Assist Reprod Genet 27:571–580PubMedCrossRefGoogle Scholar
  63. Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270PubMedCrossRefGoogle Scholar
  64. Ma T, Jiang H, Gao Y, Zhao Y, Dai L, Xiong Q, Xu Y, Zhao Z, Zhang J (2011) Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. J Appl Genet 52:481–486PubMedCrossRefGoogle Scholar
  65. Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79:696–703PubMedCrossRefGoogle Scholar
  66. Macias S, Michlewski G, Caceres JF (2009) Hormonal regulation of microRNA biogenesis. Mol Cell 36:172–173PubMedCrossRefGoogle Scholar
  67. Marcon E, Babak T, Chua G, Hughes T, Moens PB (2008) miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res 16:243–260PubMedCrossRefGoogle Scholar
  68. Mattiske DM, Han L, Mann JR (2009) Meiotic maturation failure induced by DICER1 deficiency is derived from primary oocyte ooplasm. Reproduction 137:625–632PubMedCrossRefGoogle Scholar
  69. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178–2180PubMedCrossRefGoogle Scholar
  70. McIver SC, Stanger SJ, Santarelli DM, Roman SD, Nixon B, McLaughlin EA (2012) A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 7:e35553PubMedCrossRefGoogle Scholar
  71. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197PubMedCrossRefGoogle Scholar
  72. Miles JR, McDaneld TG, Wiedmann RT, Cushman RA, Echternkamp SE, Vallet JL, Smith TP (2012) MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Anim Reprod Sci 130:16–26PubMedCrossRefGoogle Scholar
  73. Mishima T, Takizawa T, Luo SS, Ishibashi O, Kawahigashi Y, Mizuguchi Y, Ishikawa T, Mori M, Kanda T, Goto T (2008) MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction 136:811–822PubMedCrossRefGoogle Scholar
  74. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev 21:682–693PubMedCrossRefGoogle Scholar
  75. Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22:2336–2352PubMedCrossRefGoogle Scholar
  76. Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, Brinster RL (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 108:12740–12745PubMedCrossRefGoogle Scholar
  77. Novotny GW, Nielsen JE, Sonne SB, Skakkebaek NE, Rajpert-De Meyts E, Leffers H (2007a) Analysis of gene expression in normal and neoplastic human testis: new roles of RNA. Int J Androl 30:316–326, discussion 326–317PubMedCrossRefGoogle Scholar
  78. Novotny GW, Sonne SB, Nielsen JE, Jonstrup SP, Hansen MA, Skakkebaek NE, Rajpert-De Meyts E, Kjems J, Leffers H (2007b) Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ 14:879–882PubMedCrossRefGoogle Scholar
  79. Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S, Han J (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118:1944–1954PubMedCrossRefGoogle Scholar
  80. Papaioannou MD, Nef S (2010) microRNAs in the testis: building up male fertility. J Androl 31:26–33PubMedCrossRefGoogle Scholar
  81. Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, Vejnar CE, Kuhne F, Descombes P, Zdobnov EM, McManus MT, Guillou F, Harfe BD, Yan W, Jegou B, Nef S (2009) Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 326:250–259PubMedCrossRefGoogle Scholar
  82. Papaioannou MD, Lagarrigue M, Vejnar CE, Rolland AD, Kuhne F, Aubry F, Schaad O, Fort A, Descombes P, Neerman-Arbez M, Guillou F, Zdobnov EM, Pineau C, Nef S (2011) Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics. doi: 10:M900587MCP900200
  83. Plasterk RH (2006) Micro RNAs in animal development. Cell 124:877–881PubMedCrossRefGoogle Scholar
  84. Ro S, Park C, Sanders KM, McCarrey JR, Yan W (2007a) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 311:592–602PubMedCrossRefGoogle Scholar
  85. Ro S, Song R, Park C, Zheng H, Sanders KM, Yan W (2007b) Cloning and expression profiling of small RNAs expressed in the mouse ovary. RNA 13:2366–2380PubMedCrossRefGoogle Scholar
  86. Robb GB, Rana TM (2007) RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell 26:523–537PubMedCrossRefGoogle Scholar
  87. Romero Y, Meikar O, Papaioannou MD, Conne B, Grey C, Weier M, Pralong F, De Massy B, Kaessmann H, Vassalli JD, Kotaja N, Nef S (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 6:e25241PubMedCrossRefGoogle Scholar
  88. Schmidt EE, Hanson ES, Capecchi MR(1999) Sequence-independent assembly of spermatid mRNAs into messenger ribonucleoprotein particles. Mol Cell Biol 19:3904–3915Google Scholar
  89. Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML (2006) Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis. J Biol Chem 281:35048–35056PubMedCrossRefGoogle Scholar
  90. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M (2009) Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 223:49–56Google Scholar
  91. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99:4465–4470PubMedCrossRefGoogle Scholar
  92. Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20:271–277PubMedCrossRefGoogle Scholar
  93. Swetloff A, Conne B, Huarte J, Pitetti JL, Nef S, Vassalli JD (2009) Dcp1-bodies in mouse oocytes. Mol Biol Cell 20:4951–4961PubMedCrossRefGoogle Scholar
  94. Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648PubMedCrossRefGoogle Scholar
  95. Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, Hoelker M (2009) Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 76:665–677PubMedCrossRefGoogle Scholar
  96. Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, Bouma GJ (2011) Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod Biol Endocrinol 9:2PubMedCrossRefGoogle Scholar
  97. Tripurani SK, Xiao C, Salem M, Yao J (2010) Cloning and analysis of fetal ovary microRNAs in cattle. Anim Reprod Sci 120:16–22PubMedCrossRefGoogle Scholar
  98. Tsai-Morris CH, Sheng Y, Gutti RK, Tang PZ, Dufau ML (2010) Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25): a multifunctional protein essential for spermatogenesis. J Androl 31:45–52PubMedCrossRefGoogle Scholar
  99. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320:97–100PubMedCrossRefGoogle Scholar
  100. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743PubMedCrossRefGoogle Scholar
  101. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218PubMedCrossRefGoogle Scholar
  102. Wu J, Bao J, Wang L, Hu Y, Xu C (2011) MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 11:64PubMedCrossRefGoogle Scholar
  103. Xu S, Linher-Melville K, Yang BB, Wu D, Li J (2011) Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 152:3941–3951PubMedCrossRefGoogle Scholar
  104. Yan N, Lu Y, Sun H, Tao D, Zhang S, Liu W, Ma Y (2007) A microarray for microRNA profiling in mouse testis tissues. Reproduction 134:73–79PubMedCrossRefGoogle Scholar
  105. Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F (2010) MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24:540–551PubMedCrossRefGoogle Scholar
  106. Yu Z, Raabe T, Hecht NB (2005) MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 73:427–433PubMedCrossRefGoogle Scholar
  107. Zheng J, Xue H, Wang T, Jiang Y, Liu B, Li J, Liu Y, Wang W, Zhang B, Sun M (2011a) miR-21 downregulates the tumor suppressor P12(CDK2AP1) and stimulates cell proliferation and invasion. J Cell Biochem 112:872–880Google Scholar
  108. Zheng GX, Ravi A, Calabrese JM, Medeiros LA, Kirak O, Dennis LM, Jaenisch R, Burge CB, Sharp PA (2011b) A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells. PLoS Genet 7:e1002054PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. M. Hossain
    • 1
  • M. M. H. Sohel
    • 2
  • K. Schellander
    • 2
  • D. Tesfaye
    • 2
    Email author
  1. 1.Department of Animal Breeding and GeneticsBangladesh Agricultural UniversityMymensinghBangladesh
  2. 2.Institute of Animal Science, Animal Husbandry and Breeding GroupUniversity of BonnBonnGermany

Personalised recommendations