Cell and Tissue Research

, Volume 349, Issue 3, pp 783–793 | Cite as

Delivering value from sperm proteomics for fertility

  • Aruna Govindaraju
  • Sule Dogan
  • Nelida Rodriguez-Osorio
  • Kamilah Grant
  • Abdullah Kaya
  • Erdogan Memili
Review

Abstract

Fertilization of an egg by a spermatozoon sets the stage for mammalian development. Viable sperm are a prerequisite for successful fertilization and beyond. Spermatozoa have a unique cell structure where haploid genomic DNA is located in a tiny cytoplasmic space in the head, mitochondria in the midpiece and then the tail, all enclosed by several layers of membrane. Proteins in sperm play vital roles in motility, capacitation, fertilization, egg activation and embryo development. Molecular defects in these proteins are associated with low fertility or in some cases, infertility. This review will first summarize genesis, molecular anatomy and physiology of spermatozoa, fertilization, embryogenesis and then those proteins playing important roles in various aspects of sperm physiology.

Keywords

Sperm Proteomics Fertility Markers Biotechnology 

References

  1. Abbott AL, Ducibella T (2001) Calcium and the control of mammalian cortical granule exocytosis. Front Biosci 6:D792–D806PubMedCrossRefGoogle Scholar
  2. Aul RB, Oko RJ (2002) The major subacrosomal occupant of bull spermatozoa is a novel histone H2B. Dev Biol 242:376–387PubMedCrossRefGoogle Scholar
  3. Austin CR (1951) Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 4:581–596PubMedGoogle Scholar
  4. Awda BJ, Buhr MM (2010) Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa. Biol Reprod 83(5):750–758PubMedCrossRefGoogle Scholar
  5. Baba T, Azuma S, Kashiwabara S, Toyoda Y (1994) Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 269:31845–31849PubMedGoogle Scholar
  6. Baker MA, Reeves G, Hetherington L, Muller J, Baur I, Aitken RJ (2007) Identification of gene products present in the Triton X soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl 1:524–532PubMedCrossRefGoogle Scholar
  7. Bartholomew RA, Parks JE (2007) Identification, localization, and sequencing of fetal bovine VASA homolog. Anim Reprod Sci 101:241–251PubMedCrossRefGoogle Scholar
  8. Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H (2003) Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol Reprod 68:837–845PubMedCrossRefGoogle Scholar
  9. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652PubMedCrossRefGoogle Scholar
  10. Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697–698PubMedCrossRefGoogle Scholar
  11. Chao HC, Chung CL, Pan HA, Liao PC, Kuo PL, Hsu CC (2011) Protein tyrosine phosphatase non-receptor type 14 is a novel sperm-motility biomarker. J Assist Reprod Genet 28:851–861PubMedCrossRefGoogle Scholar
  12. Chen L, Wang D, Wu Z, Ma L, Daley GQ (2010) Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Res 20:982–993PubMedCrossRefGoogle Scholar
  13. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG (1998) Fertilization defects in sperm from mice lacking fertilin beta. Science 281:1857–1859PubMedCrossRefGoogle Scholar
  14. Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003PubMedCrossRefGoogle Scholar
  15. Conner SJ, Lefievre L, Hughes DC, Barratt CL (2005) Cracking the egg: increased complexity in the zona pellucida. Hum Reprod 20:1148–1152PubMedCrossRefGoogle Scholar
  16. Cooney MA, Malcuit C, Cheon B, Holland MK, Fissore RA, D’Cruz NT (2010) Species-specific differences in the activity and nuclear localization of murine and bovine phospholipase C zeta 1. Biol Reprod 83:92–101PubMedCrossRefGoogle Scholar
  17. Coward K, Ponting CP, Zhang N, Young C, Huang CJ, Chou CM, Kashir J, Fissore RA, Parrington J (2011) Identification and functional analysis of an ovarian form of the egg activation factor phospholipase C Zeta (PLCζ) in pufferfish. Mol Reprod Dev 134:3941–3952Google Scholar
  18. Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, Lai FA (2002) Sperm phospholipase Cf from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124:611–623PubMedCrossRefGoogle Scholar
  19. Da Ros VG, Maldera JA, Willis WD, Cohen DJ, Goulding EH, Gelman DM, Rubinstein M, Eddy EM, Cuasnicu PS (2008) Impaired sperm fertilizing ability in mice lacking cysteine-rIch secretory protein 1 (CRISP1). Dev Biol 320:12–18PubMedCrossRefGoogle Scholar
  20. D’Amours O, Frenette G, Fortier M, Leclerc P, Sullivan R (2010) Proteomic comparison of detergent-extracted sperm proteins from bulls with different fertility indexes. Reproduction 139:545–556PubMedCrossRefGoogle Scholar
  21. de Rooij DG, Grootegoed JA (1998) Spermatogonial stem cells. Curr Opin Cell Biol 10(6):694–701PubMedCrossRefGoogle Scholar
  22. de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798PubMedGoogle Scholar
  23. Dorus S, Wasbrough ER, Busby J, Wilkin EC, Karr TL (2010) Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol 27:1235–1246PubMedCrossRefGoogle Scholar
  24. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874PubMedCrossRefGoogle Scholar
  25. Erikson DW, Way AL, Chapman DA, Killian GJ (2007) Detection of osteopontin on Holstein bull spermatozoa, in cauda epididymal fluid and testis homogenates, and its potential role in bovine fertilization. Reproduction 133:909–917PubMedCrossRefGoogle Scholar
  26. Evans JP (2002) The molecular basis of sperm–oocyte membrane interactions during mammalian fertilization. Hum Reprod Update 8:297–311PubMedCrossRefGoogle Scholar
  27. Flesch FM, Wijnand E, van de Lest CH, Colenbrander B, van Golde LM, Gadella BM (2001) Capacitation dependent activation of tyrosine phosphorylation generates two sperm head plasma membrane proteins with high primary binding affinity for the zona pellucida. Mol Reprod Dev 60:107–115PubMedCrossRefGoogle Scholar
  28. Frapsauce C, Pionneau C, Bouley J, de Larouziere V, Berthaut I, Ravel C, Antoine JM, Soubrier F, Mandelbaum J (2009) Unexpected in vitro fertilization failure in patients with normal sperm: a proteomic analysis. Gynecol Obstet Fertil 37:796–802PubMedCrossRefGoogle Scholar
  29. Galantino-Homer HL, Visconti PE, Kopf GS (1997) Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3′5′-monophosphate-dependent pathway. Biol Reprod 56:707–719PubMedCrossRefGoogle Scholar
  30. Galantino-Homer HL, Florman HM, Storey BT, Dobrinski I, Kopf GS (2004) Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitation-associated protein tyrosine phosphorylation. Mol Reprod Dev 67:487–500PubMedCrossRefGoogle Scholar
  31. Gardner AJ, Evans JP (2006) Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod Fertil Dev 18:53–61PubMedCrossRefGoogle Scholar
  32. Gardner RL, Rossant J (1979) Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–152PubMedGoogle Scholar
  33. Gardner AJ, Williams CJ, Evans JP (2007) Establishment of the mammalian membrane block to polyspermy: evidence for calcium-dependent and -independent regulation. Reproduction 133:383–393PubMedCrossRefGoogle Scholar
  34. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666PubMedGoogle Scholar
  35. Gauci VJ, Wright EP, Coorssen JR (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4:3–29PubMedCrossRefGoogle Scholar
  36. Goossens K, Van Soom A, Van Poucke M, Vandaele L, Vandesompele J, Van Zeveren A, Peelman LJ (2007) Identification and expression analysis of genes associated with bovine blastocyst formation. BMC Dev Biol 7:64PubMedCrossRefGoogle Scholar
  37. Goto M, O’Brien DA, Eddy EM (2010) Speriolin is a novel human and mouse sperm centrosome protein. Hum Reprod 25:1884–1894PubMedCrossRefGoogle Scholar
  38. Goudet G, Mugnier S, Callebaut I, Monget P (2008) Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates. Biol Reprod 78:796–806PubMedCrossRefGoogle Scholar
  39. Graham JK, Moce E (2005) Fertility evaluation of frozen/thawed semen. Theriogenology 64:492–504PubMedCrossRefGoogle Scholar
  40. Gupta SK, Bhandari B (2011) Acrosome reaction: relevance of zona pellucida glycoproteins. Asian J Androl 13:97–105PubMedCrossRefGoogle Scholar
  41. Hahnel AC, Eddy EM (1986) Cell surface markers of mouse primordial germ cells defined by two monoclonal antibodies. Gamete Research 15:10CrossRefGoogle Scholar
  42. Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131PubMedCrossRefGoogle Scholar
  43. Han C, Park I, Lee B, Jin S, Choi H, Kwon JT, Kwon YI, Kim do H, Park ZY, Cho C (2011) Identification of heat shock protein 5, calnexin and integral membrane protein 2B as Adam7-interacting membrane proteins in mouse sperm. J Cell Physiol 226:1186–1195PubMedCrossRefGoogle Scholar
  44. Hardy DM, Garbers DL (1994) Species-specific binding of sperm proteins to the extracellular matrix (zona pellucida) of the egg. J Biol Chem 269:19000–19004PubMedGoogle Scholar
  45. Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, Shuttleworth JJ, McFarland D, Hobbs RM, Pandolfi PP et al (2007) Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 25:2330–2338PubMedCrossRefGoogle Scholar
  46. Hernandez P, Muller M, Appel RD (2006) Automated protein identification by tandem mass spectrometry: issues and strategies. Mass Spectrom Rev 25:235–254PubMedCrossRefGoogle Scholar
  47. Herrid M, Davey RJ, Hill JR (2007) Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation. Cell Tissue Res 330:321–329PubMedCrossRefGoogle Scholar
  48. Ignotz GG, Cho MY, Suarez SS (2007) Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol Reprod 77:906–913PubMedCrossRefGoogle Scholar
  49. Ikawa M, Inoue N, Okabe M (2008) Mechanisms of sperm–egg interactions emerging from gene- manipulated animals. Int J Dev Biol 52:657–664PubMedCrossRefGoogle Scholar
  50. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238PubMedCrossRefGoogle Scholar
  51. Inoue N, Ikawa M, Okabe M (2011) The mechanism of sperm–egg interaction and the involvement of IZUMO1 in fusion. Asian J Androl 13:81–87PubMedCrossRefGoogle Scholar
  52. Itach SB, Finklestein M, Etkovitz N, Breitbart H (2012) Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization. Dev Biol 362(2):154–161PubMedCrossRefGoogle Scholar
  53. Ito M, Nagaoka K, Kuroda K, Kawano N, Yoshida K, Harada Y, Shikano T, Miyado M, Oda S, Toshimori K, Mizukami Y, Murata T, Umezawa A, Miyazaki S, Miyado K. (2010) Arrest of spermatogenesis at round spermatids in PLCZ1-deficient mice. 11th Int Symp. On Spermatology (abstract).Google Scholar
  54. Ito J, Parrington J, Fissore RA (2011) PLCzeta and its role as a trigger of development in vertebrates. Mol Reprod Dev 78: 846–853. doi:10.1002/mrd.21359 PubMedCrossRefGoogle Scholar
  55. Januskauskas A, Johannisson A, Rodriguez-Martinez H (2001) Assessment of sperm quality through fluorometry and sperm chromatin structure assay in relation to field fertility of frozen-thawed semen from Swedish AI bulls. Theriogenology 55:947–961CrossRefGoogle Scholar
  56. Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F, Howes EA (2008) The equatorial subsegment in mammalian spermatozoa is enriched in tyrosine phosphorylated proteins. Biol Reprod 79:421–431PubMedCrossRefGoogle Scholar
  57. Kaewmala K, Uddin M, Cinar M, Große-Brinkhaus C, Jonas E, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K (2012) Investigation into association and expression of PLCz and COX-2 as candidate genes for boar sperm quality and fertility. Reprod Domest Anim 47:213–223. doi:10.1111/j.1439-0531.2011.01831.x PubMedCrossRefGoogle Scholar
  58. Kashir J, Heindryckx B, Jones C, De Sutter P, Parrington J, Coward K (2010) Oocyte activation, phospholipase C zeta and human infertility. Human Reprod Update 16:690–703CrossRefGoogle Scholar
  59. Kim E, Yamashita M, Kimura M, Honda A, Kashiwabara S, Baba T (2008) Sperm penetration through cumulus mass and zona pellucida. Int J Dev Biol 52(5–6):677–682PubMedCrossRefGoogle Scholar
  60. Kimura Y, Tateno H, Handel MA, Yanagimachi R (1998a) Factors affecting meiotic and developmental competence of primary spermatocyte nuclei injected into mouse oocytes. Biol Reprod 59:871–877PubMedCrossRefGoogle Scholar
  61. Kimura Y, Yanagimachi R, Kuretake S, Bortkiewicz H, Perry AC, Yanagimachi H (1998b) Analysis of mouse oocyte activation suggests the involvement of sperm perinuclear material. Biol Reprod 58:1407–1415PubMedCrossRefGoogle Scholar
  62. Klemm U, Muller-Esterl W, Engel W (1991) Acrosin, the peculiar sperm-specific serine protease. Hum Genet 87:635–641PubMedCrossRefGoogle Scholar
  63. Kline D, Kline JT (1992) Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 149:80–89PubMedCrossRefGoogle Scholar
  64. Lalancette C, Faure RL, Leclerc P (2006) Identification of the proteins present in the bull sperm cytosolic fraction enriched in tyrosine kinase activity: a proteomic approach. Proteomics 6:4523–4540PubMedCrossRefGoogle Scholar
  65. Lavon U, Volgani R, Danon D (1971) The proteins of bovine spermatozoa from the caput and cauda epididymidis. J Reprod Fertil 24(2):219–232PubMedCrossRefGoogle Scholar
  66. Lee GS, Kim HS, Lee SH, Kang MS, Kim DY, Lee CK, Kang SK, Lee BC, Hwang WS (2005) Characterization of pig VASA homolog gene and specific expression in germ-cell lineage. Mol Reprod Dev 72:320–328PubMedCrossRefGoogle Scholar
  67. Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, Lenton W, Afnan M, Brewis IA, Monk M, Hughes DC, Barratt CL (2004) Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 19:1580–1586PubMedCrossRefGoogle Scholar
  68. Lequarre AS, Marchandise J, Moreau B, Massip A, Donnay I (2003) Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition. Biol Reprod 69:1707–1713PubMedCrossRefGoogle Scholar
  69. Lie PP, Cheng CY, Mruk DD (2009) Coordinating cellular events during spermatogenesis: a biochemical model. Trends Biochem Sci 34:366–373PubMedCrossRefGoogle Scholar
  70. Litscher ES, Williams Z, Wassarman PM (2009) Zona pellucida glycoprotein ZP3 and fertilization in mammals. Mol Reprod Dev 76:933–941PubMedCrossRefGoogle Scholar
  71. Luo J, Megee S, Rathi R, Dobrinski I (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73:1531–1540PubMedCrossRefGoogle Scholar
  72. Luo J, Megee S, Dobrinski I (2009) Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J Cell Physiol 220:460–468PubMedCrossRefGoogle Scholar
  73. Luo J, Gupta V, Kern B, Tash JS, Sanchez G, Blanco G, Kinsey WH (2012) Role of FYN kinase in spermatogenesis: defects characteristic of Fyn-null sperm in mice. Biol Reprod 86(1):1–8PubMedCrossRefGoogle Scholar
  74. Mandal A, Klotz KL, Shetty J, Jayes FL, Wolkowicz MJ, Bolling LC, Coonrod SA, Black MB, Diekman AB, Haystead TA, Flickinger CJ, Herr JC (2003) SLLP1, a unique, intra-acrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. Biol Reprod 68:1525–1537PubMedCrossRefGoogle Scholar
  75. Marcello MR, Evans JP (2010) Multivariate analysis of male reproductive function in Inpp 5b-/- mice reveals heterogeneity in defects in fertility, sperm-egg membrane interaction and proteolytic cleavage of sperm ADAMs. Mol Hum Reprod 16:492–505PubMedCrossRefGoogle Scholar
  76. Margalit I, Rubinstein S, Breitbart H (1997) A novel method for evaluating the acrosomal status of mammalian spermatozoa. Arch Androl 39:87–99PubMedCrossRefGoogle Scholar
  77. Martinez-Heredia J, Estanyol JM, Ballesca JL, Oliva R (2006) Proteomic identification of human sperm proteins. Proteomics 6:4356–4369PubMedCrossRefGoogle Scholar
  78. Matwee C, Kamaruddin M, Betts DH, Basrur PK, King WA (2001) The effects of antibodies to heat shock protein 70 in fertilization and embryo development. Mol Hum Reprod 7:829–837PubMedCrossRefGoogle Scholar
  79. McLaren A, Lawson KA (2005) How is the mouse germ-cell lineage established? Differentiation 73:435–437PubMedCrossRefGoogle Scholar
  80. Memili E, First NL (2000) Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote 8:87–96PubMedCrossRefGoogle Scholar
  81. Naaby-Hansen S, Mandal A, Wolkowicz MJ, Sen B, Westbrook VA, Shetty J, Coonrod SA, Klotz KL, Kim YH, Bush LA, Flickinger CJ, Herr JC (2002) CABYR, a novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev Biol 242:236–254PubMedCrossRefGoogle Scholar
  82. Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12:195–206PubMedCrossRefGoogle Scholar
  83. Novak S, Smith TA, Paradis F, Burwash L, Dyck MK, Foxcroft GR, Dixon WT (2010) Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology 74:956–967PubMedCrossRefGoogle Scholar
  84. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedGoogle Scholar
  85. Palmer DK, O’Day K, Margolis RL (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100:32–36PubMedCrossRefGoogle Scholar
  86. Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E (2008) Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol 2:19. doi:10.1186/1752-0509-2-19 PubMedCrossRefGoogle Scholar
  87. Perl A, Qian Y, Chohan KR, Shirley CR, Amidon W, Banerjee S, Middleton FA, Conkrite KL, Barcza M, Gonchoroff N, Suarez SS, Banki K (2006) Transaldolase is essential for maintenance of the mitochondrial transmembrane potential and fertility of spermatozoa. Proc Natl Acad Sci U S A 103:14813–14818PubMedCrossRefGoogle Scholar
  88. Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365:1663–1678PubMedCrossRefGoogle Scholar
  89. Primakoff P, Myles DG (2000) The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 16:83–87PubMedCrossRefGoogle Scholar
  90. Primakoff P, Myles DG (2007) Cell–cell membrane fusion during mammalian fertilization. FEBS Lett 581:2174–2180PubMedCrossRefGoogle Scholar
  91. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609PubMedCrossRefGoogle Scholar
  92. Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A 76:3116–3120PubMedCrossRefGoogle Scholar
  93. Rodriquez-Martinez H (2003) Laboratory semen assessment and prediction of fertility: still Utopia. Reprod Dom Anim 38:312–318CrossRefGoogle Scholar
  94. Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129:3533–3544PubMedGoogle Scholar
  95. Schultz RM (1993) Regulation of zygotic gene activation in the mouse. Bioessays 15:531–538PubMedCrossRefGoogle Scholar
  96. Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331PubMedCrossRefGoogle Scholar
  97. Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W (1999) Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 61:1445–1451PubMedCrossRefGoogle Scholar
  98. Shao M, Ghosh A, Cooke VG, Naik UP, Martin-DeLeon PA (2008) JAM-A is present in mammalian spermatozoa where it is essential for normal motility. Dev Biol 313:246–255PubMedCrossRefGoogle Scholar
  99. Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL, Diekman AB, Westbrook VA, Farris EM, Hao Z, Coonrod SA, Flickinger CJ, Herr JC (2003) SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 278:30506–30515PubMedCrossRefGoogle Scholar
  100. Suarez SS (2008) Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol 52:455–462PubMedCrossRefGoogle Scholar
  101. Swann K, Yu Y (2008) The dynamics of calcium oscillations that activate mammalian eggs. Int J Dev Biol 52:585–594PubMedCrossRefGoogle Scholar
  102. Tam PP, Snow MH (1981) Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 64:133–147PubMedGoogle Scholar
  103. Tarnasky H, Cheng M, Ou Y, Thundathil JC, Oko R, van der Hoorn FA (2010) Gene trap mutation of murine outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism. BMC Dev Biol 10:67PubMedCrossRefGoogle Scholar
  104. Tegelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H ⁄ 101 F1 hybrid mouse. Mutat Res 290:193–200PubMedCrossRefGoogle Scholar
  105. Telford NA, Watson AJ, Schultz GA (1990) Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 26:90–100PubMedCrossRefGoogle Scholar
  106. Tovich PR, Oko RJ (2003) Somatic histones are components of the perinuclear theca in bovine spermatozoa. J Biol Chem 278:32431–32438PubMedCrossRefGoogle Scholar
  107. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T (2000) Expression and intracellular localization of mouse VASA-homologue protein during germ cell development. Mech Dev 93:139–149PubMedCrossRefGoogle Scholar
  108. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077PubMedCrossRefGoogle Scholar
  109. Van der Heijden GW, Ramos L, Esther B, Baart EB, Van den Berg IM, Derijck AA (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8:34PubMedCrossRefGoogle Scholar
  110. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS (1995) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139–1150PubMedGoogle Scholar
  111. Waheeb R, Hofmann MC (2011) Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. Int J Androl 34:296–305CrossRefGoogle Scholar
  112. Wassarman PM (1988) Zona pellucida glycoproteins. Annu Rev Biochem 57:415–442PubMedCrossRefGoogle Scholar
  113. White KL, Pate BJ, Sessions BR (2010) Oolemma receptors and oocyte activation. Syst Biol Reprod Med 56:365–375PubMedCrossRefGoogle Scholar
  114. Wilkins MR, Gasteiger E, Gooley AA, Herbert BR, Molloy MP, Binz PA, Ou K, Sanchez JC, Bairoch A, Williams KL, Hochstrasser DF (1999) High-throughput mass spectrometric discovery of protein post-translational modifications. J Mol Biol 289:645–657PubMedCrossRefGoogle Scholar
  115. Wu AT, Sutovsky P, Manandhar G, Xu W, Katayama M, Day BN, Park KW, Yi YJ, Xi YW, Prather RS, Oko R (2007) PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J Biol Chem 282:12164–12175PubMedCrossRefGoogle Scholar
  116. Yamaguchi R, Muro Y, Isotani A, Tokuhiro K, Takumi K, Adham I, Ikawa M, Okabe M (2009) Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol Reprod 81:142–146PubMedCrossRefGoogle Scholar
  117. Yin L, Chung CM, Huo R, Liu H, Zhou C, Xu W, Zhu H, Zhang J, Shi Q, Wong HY, Chen J, Lu Y, Bi Y, Zhao C, Du Y, Ma M, Cai Y, Chen WY, Fok KL, Tsang LL, Li K, Ni Y, Chung YW, Zhou Z, Sha J, Chan HC (2009) A sperm GPI-anchored protein elicits sperm–cumulus cross-talk leading to the acrosome reaction. Cell Mol Life Sci 66:900–908PubMedCrossRefGoogle Scholar
  118. Yoshida N, Amanai M, Fukui T, Kajikawa E, Brahmajosyula M, Iwahori A, Nakano Y, Shoji S, Diebold J, Hessel H et al (2007) Broad, ectopic expression of the sperm protein PLCZ1 induces parthenogenesis and ovarian tumours in mice. Development 134:3941–3952PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Aruna Govindaraju
    • 1
  • Sule Dogan
    • 1
  • Nelida Rodriguez-Osorio
    • 2
  • Kamilah Grant
    • 1
  • Abdullah Kaya
    • 3
  • Erdogan Memili
    • 1
  1. 1.Department of Animal and Dairy SciencesMississippi State UniversityStarkvilleUSA
  2. 2.Grupo Centauro Universidad de AntioquiaMedellinColombia
  3. 3.Alta Genetics, Inc.WatertownUSA

Personalised recommendations