Cell and Tissue Research

, Volume 349, Issue 1, pp 229–248

Chemokines in CNS injury and repair

Review

Abstract

Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines.

Keywords

Chemokines Central nervous system (CNS) CNS injury CNS repair Axon sprouting Stem cells 

References

  1. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162PubMedGoogle Scholar
  2. Antonelli A, Rotondi M, Fallahi P, Ferrari SM, Paolicchi A, Romagnani P, Serio M, Ferrannini E (2006) Increase of CXC chemokine CXCL10 and CC chemokine CCL2 serum levels in normal ageing. Cytokine 34:32–38PubMedGoogle Scholar
  3. Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE, Cole MJ, Harrison JK, Bickford PC, Gemma C (2009) Fractalkine and CX(3)CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32:2030–2044PubMedPubMedCentralGoogle Scholar
  4. Bagaeva LV, Rao P, Powers JM, Segal BM (2006) CXC chemokine ligand 13 plays a role in experimental autoimmune encephalomyelitis. J Immunol 176:7676–7685PubMedGoogle Scholar
  5. Bakondi B, Shimada IS, Peterson BM, Spees JL (2011) SDF-1α secreted by human CD133-derived multipotent stromal cells promotes neural progenitor cell survival through CXCR7. Stem Cells Dev 20:1021–1029PubMedPubMedCentralGoogle Scholar
  6. Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 96:6873–6878PubMedPubMedCentralGoogle Scholar
  7. Banisadr G, Fontanges P, Haour F, Kitabgi P, Rostène W, Melik Parsadaniantz S (2002) Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur J Neurosci 16:1661–1671PubMedGoogle Scholar
  8. Banisadr G, Gosselin RD, Mechighel P, Kitabgi P, Rostène W, Parsadaniantz SM (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. J Comp Neurol 489:275–292PubMedGoogle Scholar
  9. Barbaria EM, Kohl B, Buhren BA, Hasenpusch-Theil K, Kruse F, Kury P, Martini R, Muller HW (2009) The alpha-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot-Marie-Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells. Neurobiol Dis 33:448–458PubMedGoogle Scholar
  10. Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9:1422–1438PubMedGoogle Scholar
  11. Baune BT, Ponath G, Golledge J, Varga G, Arolt V, Rothermundt M, Berger K (2008) Association between IL-8 cytokine and cognitive performance in an elderly general population—the MEMO-Study. Neurobiol Aging 29:937–944PubMedGoogle Scholar
  12. Beech JS, Reckless J, Mosedale DE, Grainger DJ, Williams SC, Menon DK (2001) Neuroprotection in ischemia-reperfusion injury: an antiinflammatory approach using a novel broad-spectrum chemokine inhibitor. J Cereb Blood Flow Metab 21:683–689PubMedGoogle Scholar
  13. Benton RL, Maddie MA, Worth CA, Mahoney ET, Hagg T, Whittemore SR (2008) Transcriptomic screening of microvascular endothelial cells implicates novel molecular regulators of vascular dysfunction after spinal cord injury. J Cereb Blood Flow Metab 28:1771–1785PubMedPubMedCentralGoogle Scholar
  14. Berman JW, Guida MP, Warren J, Amat J, Brosnan CF (1996) Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 156:3017–3023PubMedGoogle Scholar
  15. Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, Miller RJ (2008) The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 28:6720–6730PubMedPubMedCentralGoogle Scholar
  16. Biber K, Sauter A, Brouwer N, Copray SC, Boddeke HW (2001) Ischemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue chemokine (SLC). Glia 34:121–133PubMedGoogle Scholar
  17. Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T, Boddeke H, Inoue K (2011) Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 30:1864–1873PubMedPubMedCentralGoogle Scholar
  18. Bodnar RJ, Yates CC, Rodgers ME, Du X, Wells A (2009) IP-10 induces dissociation of newly formed blood vessels. J Cell Sci 122:2064–2077PubMedPubMedCentralGoogle Scholar
  19. Bogoslovsky T, Spatz M, Chaudhry A, Maric D, Luby M, Frank J, Warach S (2011) Stromal-derived factor-1[alpha] correlates with circulating endothelial progenitor cells and with acute lesion volume in stroke patients. Stroke 42:618–625PubMedGoogle Scholar
  20. Brait VH, Rivera J, Broughton BR, Lee S, Drummond GR, Sobey CG (2010) Chemokine-related gene expression in the brain following ischemic stroke: no role for CXCR2 in outcome. Brain Res 1372:169–179PubMedGoogle Scholar
  21. Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, Shagdarsuren E, Bidzhekov K, Burger F, Pelli G, Luckow B, Mach F, Weber C (2007) Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27:373–379PubMedGoogle Scholar
  22. Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT (2002) Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 35:711–719PubMedGoogle Scholar
  23. Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC (2002) Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem 83:432–441PubMedGoogle Scholar
  24. Campbell SJ, Perry VH, Pitossi FJ, Butchart AG, Chertoff M, Waters S, Dempster R, Anthony DC (2005) Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am J Pathol 166:1487–1497PubMedPubMedCentralGoogle Scholar
  25. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924PubMedGoogle Scholar
  26. Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA (2003) A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 23:1360–1371PubMedGoogle Scholar
  27. Che X, Ye W, Panga L, Wu DC, Yang GY (2001) Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res 902:171–177PubMedGoogle Scholar
  28. Chen J, Mo R, Lescure PA, Misek DE, Hanash S, Rochford R, Hobbs M, Yung RL (2003a) Aging is associated with increased T-cell chemokine expression in C57BL/6 mice. J Gerontol A Biol Sci Med Sci 58:975–983PubMedGoogle Scholar
  29. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN (2003b) Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 23:748–755PubMedGoogle Scholar
  30. Cheng SS, Lai JJ, Lukacs NW, Kunkel SL (2001) Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol 166:1178–1184PubMedGoogle Scholar
  31. Chevigne A, Fievez V, Schmit JC, Deroo S (2011) Engineering and screening the N-terminus of chemokines for drug discovery. Biochem Pharmacol 82:1438–1456PubMedGoogle Scholar
  32. Coughlan CM, McManus CM, Sharron M, Gao Z, Murphy D, Jaffer S, Choe W, Chen W, Hesselgesser J, Gaylord H, Kalyuzhny A, Lee VM, Wolf B, Doms RW, Kolson DL (2000) Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 97:591–600PubMedGoogle Scholar
  33. Cowell RM, Xu H, Galasso JM, Silverstein FS (2002) Hypoxic-ischemic injury induces monocyte inflammatory protein-1alpha expression in immature rat brain. Stroke 33:795–801PubMedGoogle Scholar
  34. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, Savant-Bhonsale S, Chopp M (2007) Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells 25:2777–2785PubMedPubMedCentralGoogle Scholar
  35. Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD (2012) The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 5:6PubMedPubMedCentralGoogle Scholar
  36. David S, Kroner A (2011) Repertoire of microglial andmonocyte responses after spinal cord injury. Nat Rev Neurosci 12:388–399PubMedGoogle Scholar
  37. Delgado-Martín C, Escribano C, Pablos JL, Riol-Blanco L, Rodríguez-Fernández JL (2011) Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem 286:37222–37236PubMedPubMedCentralGoogle Scholar
  38. Haas AH de, Weering HR van, Jong EK de, Boddeke HW, Biber KP (2007) Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 36:137–151PubMedPubMedCentralGoogle Scholar
  39. de Jong EK de, Dijkstra IM, Hensens M, Brouwer N, Amerongen M van, Liem RS, Boddeke HW, Biber K (2005) Vesicle-mediated transport and release of CCL21 in endangered neurons: a possible explanation for microglia activation remote from a primary lesion. J Neurosci 25:7548–7557PubMedGoogle Scholar
  40. de Jong EK de, Vinet J, Stanulovic VS, Meijer M, Wesseling E, Sjollema K, Boddeke HW, Biber K (2008) Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J 22:4136–4145PubMedGoogle Scholar
  41. Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721PubMedGoogle Scholar
  42. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326PubMedPubMedCentralGoogle Scholar
  43. Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115:234–244PubMedPubMedCentralGoogle Scholar
  44. DeVries M, Kelvin A, Xu L, Ran L, Robinson J, Kelvin D (2006) Defining the origins and evolution of the chemokine/chemokine receptor system. J Immunol 176:401–415PubMedGoogle Scholar
  45. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2007) Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38:1345–1353PubMedGoogle Scholar
  46. Donnelly D, Longbrake E, Shawler T, Kigerl K, Lai W, Tovar A, Ransohoff R, Popovich P (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ monocytes. J Neurosci 31:9910–9922PubMedPubMedCentralGoogle Scholar
  47. Eisman R, Surrey S, Ramachandran B, Schwartz E, Poncz M (1990) Structural and functional comparison of the genes for human platelet factor 4 and PF4alt. Blood 76:336–344PubMedGoogle Scholar
  48. Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85:1299–1311PubMedGoogle Scholar
  49. Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, Chen Y, Su H, Young WL, Yang GY (2010) Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol 67:488–497PubMedPubMedCentralGoogle Scholar
  50. Felzien LK, McDonald JT, Gleason SM, Berman NE, Klein RM (2001) Increased chemokine gene expression during aging in the murine brain. Brain Res 890:137–146PubMedGoogle Scholar
  51. Fimmel S, Devermann L, Herrmann A, Zouboulis C (2007) GRO-alpha: a potential marker for cancer and aging silenced by RNA interference. Ann N Y Acad Sci 1119:176–189PubMedGoogle Scholar
  52. Fransen S, Copeland KF, Smieja M, Smaill F, Rosenthal KL (2000) RANTES production by T cells and CD8-mediated inhibition of human immunodeficiency virus gene expression before initiation of potent antiretroviral therapy predict sustained suppression of viral replication. J Infect Dis 181:505–512PubMedGoogle Scholar
  53. Fukumoto N, Shimaoka T, Fujimura H, Sakoda S, Tanaka M, Kita T, Yonehara S (2004) Critical roles of CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipoprotein in the pathogenesis of both acute and adoptive transfer experimental autoimmune encephalomyelitis. J Immunol 173:1620–1627PubMedGoogle Scholar
  54. Genovese T, Mazzon E, Di Paola R, Crisafulli C, Muià C, Bramanti P, Cuzzocrea S (2006) Increased oxidative-related mechanisms in the spinal cord injury in old rats. Neurosci Lett 393:141–146PubMedGoogle Scholar
  55. Ghersa P, Gelati M, Colinge J, Feger G, Power C, Ghersa P, Gelati M, Colinge J, Feger G, Power C, Papoian R, Salmaggi A (2002) MIG–differential gene expression in mouse brain endothelial cells. Neuroreport 13:9–14PubMedGoogle Scholar
  56. Ghirnikar RS, Lee YL, Eng LF (2000) Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J Neurosci Res 59:63–73PubMedGoogle Scholar
  57. Ghirnikar RS, Lee YL, Eng LF (2001) Chemokine antagonist infusion promotes axonal sparing after spinal cord contusion injury in rat. J Neurosci Res 64:582–589PubMedGoogle Scholar
  58. Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156:4363–4368PubMedGoogle Scholar
  59. Glaser J, Gonzalez R, Perreau V, Cotman C, Keirstead H (2004) Neutralization of the chemokine CXCL10 enhances tissue sparing and angiogenesis following spinal cord injury. J Neurosci Res 77:701–708PubMedGoogle Scholar
  60. Glaser J, Gonzalez R, Sadr E, Keirstead H (2006) Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury. J Neurosci Res 84:724–734PubMedGoogle Scholar
  61. Gonzalez R, Glaser J, Liu MT, Lane TE, Keirstead HS (2003) Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Exp Neurol 184:456–463PubMedGoogle Scholar
  62. Gosselin RD, Varela C, Banisadr G, Mechighel P, Rostène W, Kitabgi P, Melik-Parsadaniantz S (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 95:1023–1034PubMedGoogle Scholar
  63. Gottle P, Kremer D, Jander S, Odemis V, Engele J, Hartung HP, Kury P (2010) Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Ann Neurol 68:915–924PubMedGoogle Scholar
  64. Gourmala NG, Buttini M, Limonta S, Sauter A, Boddeke HW (1997) Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and monocytes in rat brain: effects of ischemia and peripheral lipopolysaccharide administration. J Neuroimmunol 74:35–44PubMedGoogle Scholar
  65. Gouwy M, Struyf S, Catusse J, Proost P, Van Damme J (2004) Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J Leukoc Biol 76:185–194PubMedGoogle Scholar
  66. Grau AJ, Reis A, Buggle F, Al-Khalaf A, Werle E, Valois N, Bertram M, Becher H, Grond-Ginsbach C (2001) Monocyte function and plasma levels of interleukin-8 in acute ischemic stroke. J Neurol Sci 192:41–47PubMedGoogle Scholar
  67. Guyon A, Skrzydelski D, De Giry I, Rovere C, Conductier G, Trocello JM, Dauge V, Kitabgi P, Rostène W, Nahon JL, Melik Parsadaniantz S (2009) Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience 162:1072–1080PubMedGoogle Scholar
  68. Harkness KA, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN (2003) Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. J Neuroimmunol 142:1–9PubMedGoogle Scholar
  69. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95:10896–10901PubMedPubMedCentralGoogle Scholar
  70. Hau S, Reich DM, Scholz M, Naumann W, Emmrich F, Kamprad M, Boltze J (2008) Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neurosci 9:30PubMedPubMedCentralGoogle Scholar
  71. Hawthorne AL, Popovich PG (2011) Emerging concepts in myeloid cell biology after spinal cord injury. Neurotherapeutics 8:252–261PubMedPubMedCentralGoogle Scholar
  72. Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ (2011) The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31:658–670PubMedPubMedCentralGoogle Scholar
  73. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96PubMedGoogle Scholar
  74. Hinojosa AE, Garcia-Bueno B, Leza JC, Madrigal JL (2011) CCL2/MCP-1 modulation of microglial activation and proliferation. J Neuroinflammation 8:77PubMedPubMedCentralGoogle Scholar
  75. Hirose K, Okajima K, Taoka Y, Uchiba M, Tagami H, Nakano K, Utoh J, Okabe H, Kitamura N (2000) Activated protein C reduces the ischemia/reperfusion-induced spinal cord injury in rats by inhibiting neutrophil activation. Ann Surg 232:272–280PubMedPubMedCentralGoogle Scholar
  76. Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, Parker J, Hadley TJ, Peiper SC (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 158:2882–2890PubMedGoogle Scholar
  77. Hosking MP, Tirotta E, Ransohoff RM, Lane TE (2010) CXCR2 signaling protects oligodendrocytes and restricts demyelination in a mouse model of viral-induced demyelination. PloS one 5:e11340PubMedPubMedCentralGoogle Scholar
  78. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C (2002) Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 22:308–317PubMedGoogle Scholar
  79. Hurwitz AA, Lyman WD, Berman JW (1995) Tumor necrosis factor alpha and transforming growth factor beta upregulate astrocyte expression of monocyte chemoattractant protein-1. J Neuroimmunol 57:193–198PubMedGoogle Scholar
  80. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122PubMedPubMedCentralGoogle Scholar
  81. Inadera H, Egashira K, Takemoto M, Ouchi Y, Matsushima K (1999) Increase in circulating levels of monocyte chemoattractant protein-1 with aging. J Inteferon Cytokine Res 19:1179–1182Google Scholar
  82. Jaerve A, Schiwy N, Schmitz C, Mueller HW (2011) Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol 231:284–294PubMedGoogle Scholar
  83. Jiang L, Newman M, Saporta S, Chen N, Sanberg C, Sanberg PR, Willing AE (2008) MIP-1alpha and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res 5:118–124PubMedGoogle Scholar
  84. Jones TB, Hart RP, Popovich PG (2005) Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury. J Neurosci 25:6576–6583PubMedPubMedCentralGoogle Scholar
  85. Kang J, Jiang MH, Min HJ, Jo EK, Lee S, Karin M, Yune TY, Lee SJ (2011) IKK-beta-mediated myeloid cell activation exacerbates inflammation and inhibits recovery after spinal cord injury. Eur J Immunol 41:1266–1277PubMedGoogle Scholar
  86. Kavanagh RJ, Kam PC (2001) Lazaroids: efficacy and mechanism of action of the 21-aminosteroids in neuroprotection. Br J Anaesth 86:110–119PubMedGoogle Scholar
  87. Keeley EC, Mehrad B, Strieter RM (2010) Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res 317:685–690PubMedPubMedCentralGoogle Scholar
  88. Kerstetter AE, Padovani-Claudio DA, Bai L, Miller RH (2009) Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220:44–56PubMedPubMedCentralGoogle Scholar
  89. Kiguchi N, Kobayashi Y, Maeda T, Saika F, Kishioka S (2010) CC-chemokine MIP-1alpha in the spinal cord contributes to nerve injury-induced neuropathic pain. Neurosci Lett 484:17–21PubMedGoogle Scholar
  90. Kim JS, Gautam SC, Chopp M, Zaloga C, Jones ML, Ward PA, Welch KM (1995) Expression of monocyte chemoattractant protein-1 and monocyte inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol 56:127–134PubMedGoogle Scholar
  91. Kim JV, Jiang N, Tadokoro CE, Liu L, Ransohoff RM, Lafaille JJ, Dustin ML (2009) Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J Immunol Methods 352:89–100PubMedPubMedCentralGoogle Scholar
  92. Kim HO, Kim HS, Youn JC, Shin EC, Park S (2011) Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J Transl Med 9:113PubMedPubMedCentralGoogle Scholar
  93. Knerlich-Lukoschus F, Ropp-Brenner B von der, Lucius R, Mehdorn HM, Held-Feindt J (2010) Chemokine expression in the white matter spinal cord precursor niche after force-defined spinal cord contusion injuries in adult rats. Glia 58:916–931PubMedGoogle Scholar
  94. Kostulas N, Kivisakk P, Huang Y, Matusevicius D, Kostulas V, Link H (1998) Ischemic stroke is associated with a systemic increase of blood mononuclear cells expressing interleukin-8 mRNA. Stroke 29:462–466PubMedGoogle Scholar
  95. Kremer KN, Clift IC, Miamen AG, Bamidele AO, Qian NX, Humphreys TD, Hedin KE (2011) Stromal cell-derived factor-1 signaling via the CXCR4-TCR heterodimer requires phospholipase C-β3 and phospholipase C-γ1 for distinct cellular responses. J Immunol 187:1440–1447PubMedPubMedCentralGoogle Scholar
  96. Kumamaru H, Saiwai H, Ohkawa Y, Yamada H, Iwamoto Y, Okada S (2011) Age-related differences in cellular and molecular profiles of inflammatory responses after spinal cord injury. J Cell Physiol 227:1335–1346Google Scholar
  97. Kunihara T, Sasaki S, Shiiya N, Ishikura H, Kawarada Y, Matsukawa A, Yasuda K (2000) Lazaroid reduces production of IL-8 and IL-1 receptor antagonist in ischemic spinal cord injury. Ann Thorac Surg 69:792–798PubMedGoogle Scholar
  98. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H, Umedaly H, Giffin M, Street J, Boyd MC, Paquette SJ, Fisher CG, Dvorak MF (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27:669–682PubMedGoogle Scholar
  99. Lalor SJ, Segal BM (2010) Lymphoid chemokines in the CNS. J Neuroimmunol 224:56–61PubMedPubMedCentralGoogle Scholar
  100. Lee YL, Shih K, Bao P, Ghirnikar RS, Eng LF (2000) Cytokine chemokine expression in contused rat spinal cord. Neurochem Int 36:417–425PubMedGoogle Scholar
  101. Li M, Yu J, Li Y, Li D, Yan D, Qu Z, Ruan Q (2009) CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF-1alpha/CXCR4 signaling axis. Exp Mol Pathol 88:250–255PubMedGoogle Scholar
  102. Lindner M, Trebst C, Heine S, Skripuletz T, Koutsoudaki PN, Stangel M (2008) The chemokine receptor CXCR2 is differentially regulated on glial cells in vivo but is not required for successful remyelination after cuprizone-induced demyelination. Glia 56:1104–1113PubMedGoogle Scholar
  103. Loh SA, Chang EI, Galvez MG, Thangarajah H, El-ftesi S, Vial IN, Lin DA, Gurtner GC (2009) SDF-1 alpha expression during wound healing in the aged is HIF dependent. Plast Reconstr Surg 123:65S–75SPubMedGoogle Scholar
  104. Losy J, Zaremba J (2001) Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke 32:2695–2696PubMedGoogle Scholar
  105. Losy J, Zaremba J, Skrobanski P (2005) CXCL1 (GRO-alpha) chemokine in acute ischaemic stroke patients. Folia Neuropathol 43:97–102PubMedGoogle Scholar
  106. Ludwig A, Weber C (2007) Transmembrane chemokines: versatile “special agents” in vascular inflammation. Thromb Haemost 97:694–703PubMedGoogle Scholar
  107. Ludwig A, Schulte A, Schnack C, Hundhausen C, Reiss K, Brodway N, Held-Feindt J, Mentlein R (2005) Enhanced expression and shedding of the transmembrane chemokine CXCL16 by reactive astrocytes and glioma cells. J Neurochem 93:1293–1303PubMedGoogle Scholar
  108. Luster AD, Greenberg SM, Leder P (1995) The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 182:219–231PubMedGoogle Scholar
  109. Ma M, Wei T, Boring L, Charo IF, Ransohoff RM, Jakeman LB (2002) Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J Neurosci Res 68:691–702PubMedGoogle Scholar
  110. Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6:907–918PubMedGoogle Scholar
  111. Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298–304PubMedGoogle Scholar
  112. Matsumoto T, Yokoi K, Mukaida N, Harada A, Yamashita J, Watanabe Y, Matsushima K (1997) Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukoc Biol 62:581–587PubMedGoogle Scholar
  113. McColl SR, Mahalingam S, Staykova M, Tylaska LA, Fisher KE, Strick CA, Gladue RP, Neote KS, Willenborg DO (2004) Expression of rat I-TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands. Lab Invest 84:1418–1429PubMedGoogle Scholar
  114. McTigue DM, Tani M, Krivacic K, Chernosky A, Kelner GS, Maciejewski D, Maki R, Ransohoff RM, Stokes BT (1998) Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J Neurosci Res 53:368–376PubMedGoogle Scholar
  115. Minami M, Satoh M (2003) Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci 74:321–327PubMedGoogle Scholar
  116. Mirabelli-Badenier M, Braunersreuther V, Viviani GL, Dallegri F, Quercioli A, Veneselli E, Mach F, Montecucco F (2011) CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 105:409–420PubMedGoogle Scholar
  117. Montecucco F, Steffens S, Burger F, Da Costa A, Bianchi G, Bertolotto M, Mach F, Dallegri F, Ottonello L (2008a) Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signaling pathways. Cell Signal 20:557–568PubMedGoogle Scholar
  118. Montecucco F, Steffens S, Burger F, Pelli G, Monaco C, Mach F (2008b) C-reactive protein (CRP) induces chemokine secretion via CD11b/ICAM-1 interaction in human adherent monocytes. J Leukoc Biol 84:1109–1119PubMedGoogle Scholar
  119. Mortier A, Gouwy M, Van Damme J, Proost P (2011) Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Exp Cell Res 317:642–654PubMedGoogle Scholar
  120. Müller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJ, Campbell IL (2007) CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 179:2774–2786PubMedGoogle Scholar
  121. Muessel MJ, Klein RM, Wilson AM, Berman NE (2002) Ablation of the chemokine monocyte chemoattractant protein-1 delays retrograde neuronal degeneration, attenuates microglial activation, and alters expression of cell death molecules. Brain Res Mol Brain Res 103:12–27PubMedGoogle Scholar
  122. Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG, Rot A, Thelen M (2010) CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 5:e9175PubMedPubMedCentralGoogle Scholar
  123. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639PubMedGoogle Scholar
  124. Njemini R, Bautmans I, Lambert M, Demanet C, Mets T (2007) Heat shock proteins and chemokine/cytokine secretion profile in ageing and inflammation. Mech Ageing Dev 128:450–454PubMedGoogle Scholar
  125. Omari KM, John G, Lango R, Raine CS (2006) Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 53:24–31PubMedGoogle Scholar
  126. Omari KM, Lutz SE, Santambrogio L, Lira SA, Raine CS (2009) Neuroprotection and remyelination after autoimmune demyelination in mice that inducibly overexpress CXCL1. Am J Pathol 174:164–176PubMedPubMedCentralGoogle Scholar
  127. Opatz J, Kury P, Schiwy N, Jarve A, Estrada V, Brazda N, Bosse F, Muller HW (2009) SDF-1 stimulates neurite growth on inhibitory CNS myelin. Mol Cell Neurosci 40:293–300PubMedGoogle Scholar
  128. Ormstad H, Aass HC, Lund-Sorensen N, Amthor KF, Sandvik L (2011) Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol 258:677–685PubMedPubMedCentralGoogle Scholar
  129. Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 107:11062–11067PubMedPubMedCentralGoogle Scholar
  130. Pillay J, Braber I den, Vrisekoop N, Kwast LM, Boer RJ de, Borghans JA, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116:625–627PubMedGoogle Scholar
  131. Pineau I, Sun L, Bastien D, Lacroix S (2009) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 24:540–553PubMedGoogle Scholar
  132. Proudfoot AE, Power CA, Schwarz MK (2010) Anti-chemokine small molecule drugs: a promising future? Expert Opin Investig Drugs 19:345–355PubMedGoogle Scholar
  133. Pujol F, Kitabgi P, Boudin H (2005) The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 118:1071–1080PubMedGoogle Scholar
  134. Rainey-Barger EK, Rumble JM, Lalor SJ, Esen N, Segal BM, Irani DN (2010) The lymphoid chemokine, CXCL13, is dispensable for the initial recruitment of B cells to the acutely inflamed central nervous system. Brain Behav Immun 25:922–931PubMedPubMedCentralGoogle Scholar
  135. Rancan M, Bye N, Otto VI, Trentz O, Kossmann T, Frentzel S, Morganti-Kossmann MC (2004) The chemokine fractalkine in patients with severe traumatic brain injury and a mouse model of closed head injury. J Cereb Blood Flow Metab 24:1110–1118PubMedGoogle Scholar
  136. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, Kettenmann H (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24:8500–8509PubMedGoogle Scholar
  137. Reale M, Di Giulio C, Cacchio M, Barbacane RC, Grilli A, Felaco M, Bianchi G, Di Gioacchino M, Conti P (2003) Oxygen supply modulates MCP-1 release in monocytes from young and aged rats: decrease of MCP-1 transcription and translation is age-related. Mol Cell Biochem 248:1–6PubMedGoogle Scholar
  138. Reichel CA, Rehberg M, Lerchenberger M, Berberich N, Bihari P, Khandoga AG, Zahler S, Krombach F (2009) Ccl2 and Ccl3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators. Arterioscler Thromb Vasc Biol 29:1787–1793PubMedGoogle Scholar
  139. Rice T, Larsen J, Rivest S, Yong VW (2007) Characterization of the early neuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 66:184–195PubMedGoogle Scholar
  140. Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, Wang Y, Zhang C, Chopp M (2006) Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 26:125–134PubMedGoogle Scholar
  141. Rose JJ, Foley JF, Murphy PM, Venkatesan S (2004) On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J Biol Chem 279:24372–24386PubMedGoogle Scholar
  142. Rostène W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8:895–903PubMedGoogle Scholar
  143. Salanga CL, Handel TM (2011) Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res 317:590–601PubMedPubMedCentralGoogle Scholar
  144. Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, Lopez-Bendito G, Stumm R, Marin O (2011) Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 69:77–90PubMedGoogle Scholar
  145. Schönemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R (2008) Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol 510:207–220PubMedGoogle Scholar
  146. Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F (2010) Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 11:30PubMedPubMedCentralGoogle Scholar
  147. Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC (2010) Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis 40:394–403PubMedGoogle Scholar
  148. Shahrara S, Park CC, Temkin V, Jarvis JW, Volin MV, Pope RM (2006) RANTES modulates TLR4-induced cytokine secretion in human peripheral blood monocytes. J Immunol 177:5077–5087PubMedGoogle Scholar
  149. Shannon LA, Calloway PA, Welch TP, Vines CM (2010) CCR7/CCL21 migration on fibronectin is mediated by phospholipase Cgamma1 and ERK1/2 in primary T lymphocytes. J Biol Chem 285:38781–38787PubMedPubMedCentralGoogle Scholar
  150. Shurin GV, Yurkovetsky ZR, Chatta GS, Tourkova IL, Shurin MR, Lokshin AE (2007) Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine 39:123–129PubMedGoogle Scholar
  151. Shyu WC, Lin SZ, Yen PS, Su CY, Chen DC, Wang HJ, Li H (2008a) Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther 324:834–849PubMedGoogle Scholar
  152. Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, Wang HJ, Wang HW, Tsai CH, Li H (2008b) Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 118:2482–2495PubMedPubMedCentralGoogle Scholar
  153. Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815PubMedPubMedCentralGoogle Scholar
  154. Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, Dubois-Dauphin M, Krause KH (2010) Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 160:311–321PubMedPubMedCentralGoogle Scholar
  155. Soriano SG, Amaravadi LS, Wang YF, Zhou H, Yu GX, Tonra JR, Fairchild-Huntress V, Fang Q, Dunmore JH, Huszar D, Pan Y (2002) Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 125:59–65PubMedGoogle Scholar
  156. Sozzani S, Zhou D, Locati M, Rieppi M, Proost P, Magazin M, Vita N, Damme J van, Mantovani A (1994) Receptors and transduction pathways for monocyte chemotactic protein-2 and monocyte chemotactic protein-3. Similarities and differences with MCP-1. J Immunol 152:3615–3622PubMedGoogle Scholar
  157. Spitzbarth I, Bock P, Haist V, Stein VM, Tipold A, Wewetzer K, Baumgartner W, Beineke A (2011) Prominent microglial activation in the early proinflammatory immune response in naturally occurring canine spinal cord injury. J Neuropathol Exp Neurol 70:703–714PubMedGoogle Scholar
  158. Spleiss O, Appel K, Boddeke HW, Berger M, Gebicke-Haerter PJ (1998) Molecular biology of microglia cytokine and chemokine receptors and microglial activation. Life Sci 62:1707–1710PubMedGoogle Scholar
  159. Stamatovic S, Shakui P, Keep R, Moore B, Kunkel S, Van Rooijen N, Andjelkovic A (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 25:593–606PubMedGoogle Scholar
  160. Staniland AA, Clark AK, Wodarski R, Sasso O, Maione F, D'Acquisto F, Malcangio M (2010) Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J Neurochem 114:1143–1157PubMedGoogle Scholar
  161. Stefini R, Catenacci E, Piva S, Sozzani S, Valerio A, Bergomi R, Cenzato M, Mortini P, Latronico N (2008) Chemokine detection in the cerebral tissue of patients with posttraumatic brain contusions. J Neurosurg 108:958–962PubMedGoogle Scholar
  162. Stirling DP, Liu S, Kubes P, Yong VW (2009) Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci 29:753-764PubMedGoogle Scholar
  163. Strieter RM, Kunkel SL, Arenberg DA, Burdick MD, Polverini PJ (1995a) Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 210:51–57PubMedGoogle Scholar
  164. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995b) The role of CXC chemokines as regulators of angiogenesis. Shock 4:155–160PubMedGoogle Scholar
  165. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D et al (1995c) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357PubMedGoogle Scholar
  166. Stumm R, Höllt V (2007) CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain. J Mol Endocrinol 38:377–382PubMedGoogle Scholar
  167. Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, Höllt V, Schulz S (2002) A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 22:5865–5878PubMedGoogle Scholar
  168. Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea JF, Chodobski A (2009) The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab 29:1503–1516PubMedPubMedCentralGoogle Scholar
  169. Takami S, Nishikawa H, Minami M, Nishiyori A, Sato M, Akaike A, Satoh M (1997) Induction of monocyte inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci Lett 227:173–176PubMedGoogle Scholar
  170. Takami S, Minami M, Nagata I, Namura S, Satoh M (2001) Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1430–1435PubMedGoogle Scholar
  171. Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim S, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426:69–74PubMedGoogle Scholar
  172. Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, Tarkowski A (1997) Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol 110:492–499PubMedPubMedCentralGoogle Scholar
  173. Tatara Y, Ohishi M, Yamamoto K, Shiota A, Hayashi N, Iwamoto Y, Takeda M, Takagi T, Katsuya T, Ogihara T, Rakugi H (2009) Monocyte inflammatory protein-1beta induced cell adhesion with increased intracellular reactive oxygen species. J Mol Cell Cardiol 47:104–111PubMedGoogle Scholar
  174. Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T, Granger DN (2008) Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke 39:2560–2570PubMedPubMedCentralGoogle Scholar
  175. Terao Y, Ohta H, Oda A, Nakagaito Y, Kiyota Y, Shintani Y (2009) Monocyte inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci Res 64:75–82PubMedGoogle Scholar
  176. Thibeault I, Laflamme N, Rivest S (2001) Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 434:461–477PubMedGoogle Scholar
  177. Thirumangalakudi L, Yin L, Rao HV, Grammas P (2007) IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J Alzheimers Dis 11:305–311PubMedGoogle Scholar
  178. Tripathy D, Thirumangalakudi L, Grammas P (2010a) RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol Aging 31:8–16PubMedPubMedCentralGoogle Scholar
  179. Tripathy D, Yin X, Sanchez A, Luo J, Martinez J, Grammas P (2010b) Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging. J Neuroinflammation 7:63PubMedPubMedCentralGoogle Scholar
  180. Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383PubMedGoogle Scholar
  181. Tysseling VM, Mithal D, Sahni V, Birch D, Jung H, Belmadani A, Miller RJ, Kessler JA (2011) SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury. J Neuroinflammation 8:16PubMedPubMedCentralGoogle Scholar
  182. Valerio A, Ferrario M, Martinez FO, Locati M, Ghisi V, Bresciani LG, Mantovani A, Spano P (2004) Gene expression profile activated by the chemokine CCL5/RANTES in human neuronal cells. J Neurosci Res 78:371–382PubMedGoogle Scholar
  183. Van Steenwinckel J, Reaux-Le Goazigo A, Pommier B, Mauborgne A, Dansereau MA, Kitabgi P, Sarret P, Pohl M, Melik Parsadaniantz S (2011) CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci 31:5865–5875PubMedGoogle Scholar
  184. Villa P, Triulzi S, Cavalieri B, Di Bitondo R, Bertini R, Barbera S, Bigini P, Mennini T, Gelosa P, Tremoli E, Sironi L, Ghezzi P (2007) The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med 13:125–133PubMedPubMedCentralGoogle Scholar
  185. Wain JH, Kirby JA, Ali S (2002) Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, -2, -3 and -4. Clin Exp Immunol 127:436–444PubMedPubMedCentralGoogle Scholar
  186. Wang J, Norcross M (2008) Dimerization of chemokine receptors in living cells: key to receptor function and novel targets for therapy. Drug Discov Today 13:625–632PubMedGoogle Scholar
  187. Wang X, Ellison JA, Siren AL, Lysko PG, Yue TL, Barone FC, Shatzman A, Feuerstein GZ (1998) Prolonged expression of interferon-inducible protein-10 in ischemic cortex after permanent occlusion of the middle cerebral artery in rat. J Neurochem 71:1194–1204PubMedGoogle Scholar
  188. Wang X, Li X, Yaish-Ohad S, Sarau HM, Barone FC, Feuerstein GZ (1999) Molecular cloning and expression of the rat monocyte chemotactic protein-3 gene: a possible role in stroke. Brain Res Mol Brain Res 71:304–312PubMedGoogle Scholar
  189. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, Chopp M (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117PubMedGoogle Scholar
  190. Wang Y, Deng Y, Zhou GQ (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195:104–112PubMedGoogle Scholar
  191. Watson K, Fan GH (2005) Monocyte inflammatory protein 2 inhibits beta-amyloid peptide (1-42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol 67:757–765PubMedGoogle Scholar
  192. Weber C, Kraemer S, Drechsler M, Lue H, Koenen RR, Kapurniotu A, Zernecke A, Bernhagen J (2008) Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proc Natl Acad Sci USA 105:16278–16283PubMedPubMedCentralGoogle Scholar
  193. Weiss N, Deboux C, Chaverot N, Miller F, Baron-Van Evercooren A, Couraud PO, Cazaubon S (2010) IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells. J Neuroimmunol 223:131–134PubMedGoogle Scholar
  194. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86PubMedPubMedCentralGoogle Scholar
  195. Worthmann H, Tryc AB, Goldbecker A, Ma YT, Tountopoulou A, Hahn A, Dengler R, Lichtinghagen R, Weissenborn K (2010) The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis 30:85–92PubMedGoogle Scholar
  196. Wu D, LaRosa GJ, Simon MI (1993) G protein-coupled signal transduction pathways for interleukin-8. Science 261:101–103PubMedGoogle Scholar
  197. Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP (2010) Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 24:1190–1201PubMedPubMedCentralGoogle Scholar
  198. Xia MQ, Hyman BT (1999) Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease. J Neurovirol 5:32–41PubMedGoogle Scholar
  199. Xia M, Sui Z (2009) Recent developments in CCR2 antagonists. Expert Opin Ther Pat 19:295–303PubMedGoogle Scholar
  200. Yamagami S, Tamura M, Hayashi M, Endo N, Tanabe H, Katsuura Y, Komoriya K (1999) Differential production of MCP-1 and cytokine-induced neutrophil chemoattractant in the ischemic brain after transient focal ischemia in rats. J Leukoc Biol 65:744–749PubMedGoogle Scholar
  201. Yamasaki Y, Matsuo Y, Matsuura N, Onodera H, Itoyama Y, Kogure K (1995) Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke 26:318–322PubMedGoogle Scholar
  202. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ (2007) Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27:1213–1224PubMedGoogle Scholar
  203. Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64:55–60PubMedGoogle Scholar
  204. Zaremba J, Skrobanski P, Losy J (2006a) The level of chemokine CXCL5 in the cerebrospinal fluid is increased during the first 24 hours of ischaemic stroke and correlates with the size of early brain damage. Folia Morphol 65:1–5Google Scholar
  205. Zaremba J, Ilkowski J, Losy J (2006b) Serial measurements of levels of the chemokines CCL2, CCL3 and CCL5 in serum of patients with acute ischaemic stroke. Folia Neuropathol 44:282–289PubMedGoogle Scholar
  206. Zhang L, Ran L, Garcia GE, Wang XH, Han S, Du J, Mitch WE (2009) Chemokine CXCL16 regulates neutrophil and monocyte infiltration into injured muscle, promoting muscle regeneration. Am J Pathol 175:2518–2527PubMedPubMedCentralGoogle Scholar
  207. Zhao P, Waxman SG, Hains BC (2007) Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 27:8893–890PubMedGoogle Scholar
  208. Zheng H, Shen CJ, Qiu FY, Zhao YB, Fu GS (2010) Stromal cell-derived factor 1alpha reduces senescence of endothelial progenitor subpopulation in lectin-binding and DiLDL-uptaking cell through telomerase activation and telomere elongation. J Cell Physiol 223:757–763PubMedGoogle Scholar
  209. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Molecular Neurobiology Laboratory, Department of NeurologyMedical Faculty Heinrich Heine UniversityDüsseldorfGermany

Personalised recommendations