Cell and Tissue Research

, Volume 348, Issue 3, pp 429–438 | Cite as

Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats

  • Katja Rosenkranz
  • Sandra Kumbruch
  • Matthias Tenbusch
  • Katrin Marcus
  • Katrin Marschner
  • Rolf Dermietzel
  • Carola Meier
Regular Article


Transplantation of human umbilical cord blood (hucb) cells in a model of hypoxic-ischemic brain injury led to the amelioration of lesion-impaired neurological and motor functions. However, the mechanisms by which transplanted cells mediate functional recovery after brain injury are largely unknown. In this study, the effects of hucb cell transplantation were investigated in this experimental paradigm at the cellular and molecular level. As the pathological cascade in hypoxic-ischemic brain injury includes inflammation, reduced blood flow, and neuronal cell death, we analyzed the effects of peripherally administered hucb cells on these detrimental processes, investigating the expression of characteristic marker proteins. Application of hucb cells after perinatal hypoxic-ischemic brain injury correlated with an increased expression of the proteins Tie-2 and occludin, which are associated with angiogenesis. Lesion-induced apoptosis, determined by expression of cleaved caspase-3, decreased, whereas the number of vital neurons, identified by counting of NeuN-positive cells, increased. In addition, we observed an increase in the expression of neurotrophic and pro-angiogenic growth factors, namely BDNF and VEGF, in the lesioned brain upon hucb cell transplantation. The release of neurotrophic factors mediated by transplanted hucb cells might cause a lower number of neurons to undergo apoptosis and result in a higher number of living neurons. In parallel, the increase of VEGF might cause growth of blood vessels. Thus, hucb transplantation might contribute to functional recovery after brain injury mediated by systemic or local effects.


Cell transplantation Umbilical cord blood Neuronal survival Apoptosis Angiogenesis Rat (Wistar) 



The authors would like to thank Janet Moers, Lidia Janota, Heike Groth and Jennifer Heinz for their excellent technical assistance and Helga Schulze for expert drawing.

Supplementary material

441_2012_1401_MOESM1_ESM.pdf (2.4 mb)
Fig. S1 Expression of occludin in rat brains assessed by immunohistochemistry. Representative images of immunhistochemical staining of occludin (green), on P21 rat brains of animals of the following groups a sham, b lesion and c lesion+hucb (lesion plus additional application of hucb cells). Nuclei are labeled in blue (Hoechst staining a–c). Scale bar in (a) for (a–c) 50 μm (PDF 2484 kb)
441_2012_1401_MOESM2_ESM.pdf (5 kb)
Fig. S2 Quantitative real time PCR analysis of rat VEGF mRNA expression. For determination of species origin of VEGF, quantitative real time PCR was performed with primers specific for rat VEGF. Analysis was performed at P9 and P21 in left hemispheres of rat brains of the following experimental groups: sham, sham+hucb, lesion and lesion+hucb. Significant differences of < 0.05 are indicated by *** (PDF 5 kb)


  1. Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343PubMedCrossRefGoogle Scholar
  2. Asai N, Abe T, Saito T, Sato H, Ishiguro S, Nishida K (2007) Temporal and spatial differences in expression of TrkB isoforms in rat retina during constant light exposure. Exp Eye Res 85:346–355PubMedCrossRefGoogle Scholar
  3. Bai XF, Zhu J, Zhang GX, Kaponides G, Hojeberg B, van der Meide PH, Link H (1997) IL-10 suppresses experimental autoimmune neuritis and down-regulates TH1-type immune responses. Clin Immunol Immunopathol 83:117–126PubMedCrossRefGoogle Scholar
  4. Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049PubMedCrossRefGoogle Scholar
  5. Berger R, Garnier Y (2000) Perinatal brain injury. J Perinat Med 28:261–285PubMedCrossRefGoogle Scholar
  6. Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86:1245–1257PubMedCrossRefGoogle Scholar
  7. Bona E, Aden U, Gilland E, Fredholm BB, Hagberg H (1997) Neonatal cerebral hypoxia-ischemia: the effect of adenosine receptor antagonists. Neuropharmacology 36:1327–1338PubMedCrossRefGoogle Scholar
  8. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115:2131–2138PubMedGoogle Scholar
  9. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003a) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786PubMedCrossRefGoogle Scholar
  10. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003b) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699PubMedCrossRefGoogle Scholar
  11. Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibanez CF, Rafii S, Hempstead BL (2000) Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127:4531–4540PubMedGoogle Scholar
  12. Fukuhara S, Sako K, Minami T, Noda K, Kim HZ, Kodama T, Shibuya M, Takakura N, Koh GY, Mochizuki N (2008) Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 10:513–526PubMedCrossRefGoogle Scholar
  13. Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, Hudson JE, Chen N, Davis CD, Sanberg PR (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 12:255–270PubMedCrossRefGoogle Scholar
  14. Geissler M, Dinse HR, Kumbruch S, Kreikemeier K, Meier C (2011) Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex. PLoS One 6:e20194PubMedCrossRefGoogle Scholar
  15. Ha Y, Choi JU, Yoon DH, Yeon DS, Lee JJ, Kim HO, Cho YE (2001) Neural phenotype expression of cultured human cord blood cells in vitro. NeuroReport 12:3523–3527PubMedCrossRefGoogle Scholar
  16. Hagberg H, Mallard C, Rousset CI, Xiaoyang W (2009) Apoptotic mechanisms in the immature brain: involvement of mitochondria. J Child Neurol 24:1141–1146PubMedCrossRefGoogle Scholar
  17. Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775–5781PubMedGoogle Scholar
  18. Han BH, D'Costa A, Back SA, Parsadanian M, Patel S, Shah AR, Gidday JM, Srinivasan A, Deshmukh M, Holtzman DM (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 7:38–53PubMedCrossRefGoogle Scholar
  19. Hossain MA (2008) Hypoxic-ischemic injury in neonatal brain: involvement of a novel neuronal molecule in neuronal cell death and potential target for neuroprotection. Int J Dev Neurosci 26:93–101PubMedCrossRefGoogle Scholar
  20. Jensen A, Berger R (1991) Fetal circulatory responses to oxygen lack. J Dev Physiol 16:181–207PubMedGoogle Scholar
  21. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950PubMedCrossRefGoogle Scholar
  22. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200PubMedCrossRefGoogle Scholar
  23. Lee HJ, Kim KS, Park IH, Kim SU (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2:e156PubMedCrossRefGoogle Scholar
  24. Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36:1–17PubMedGoogle Scholar
  25. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8:63–71PubMedCrossRefGoogle Scholar
  26. Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108:811–820PubMedCrossRefGoogle Scholar
  27. Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT (2008) Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 270:70–76PubMedCrossRefGoogle Scholar
  28. Marti HH (2002) Vascular endothelial growth factor. Adv Exp Med Biol 513:375–394PubMedCrossRefGoogle Scholar
  29. Meier C, Middelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, Dinse HR, Dermietzel R, Jensen A (2006) Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 59:244–249PubMedCrossRefGoogle Scholar
  30. Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, Blue ME, Johnston MV (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20:7994–8004PubMedGoogle Scholar
  31. Neuhoff S, Moers J, Rieks M, Grunwald T, Jensen A, Dermietzel R, Meier C (2007) Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol 35:1119–1131PubMedCrossRefGoogle Scholar
  32. Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR (2006) Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol 199:201–208PubMedCrossRefGoogle Scholar
  33. Nikkhah G, Odin P, Smits A, Tingstrom A, Othberg A, Brundin P, Funa K, Lindvall O (1993) Platelet-derived growth factor promotes survival of rat and human mesencephalic dopaminergic neurons in culture. Exp Brain Res 92:516–523PubMedCrossRefGoogle Scholar
  34. Park CW, Kim HW, Lim JH, Yoo KD, Chung S, Shin SJ, Chung HW, Lee SJ, Chae CB, Kim YS, Chang YS (2009a) Vascular endothelial growth factor inhibition by dRK6 causes endothelial apoptosis, fibrosis, and inflammation in the heart via the Akt/eNOS axis in db/db mice. Diabetes 58:2666–2676PubMedCrossRefGoogle Scholar
  35. Park DH, Eve DJ, Musso J 3rd, Klasko SK, Cruz E, Borlongan CV, Sanberg PR (2009b) Inflammation and stem cell migration to the injured brain in higher organisms. Stem Cells Dev 18:693–702CrossRefGoogle Scholar
  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  37. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36PubMedCrossRefGoogle Scholar
  38. Pimentel-Coelho PM, Magalhaes ES, Lopes LM, Deazevedo LC, Santiago MF, Mendez-Otero R (2010) Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 19:351–358PubMedCrossRefGoogle Scholar
  39. Plate KH, Beck H, Danner S, Allegrini PR, Wiessner C (1999) Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 58:654–666PubMedCrossRefGoogle Scholar
  40. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66PubMedCrossRefGoogle Scholar
  41. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141PubMedCrossRefGoogle Scholar
  42. Rosenkranz K, Meier C (2011) Umbilical cord blood cell transplantation after brain ischemia-From recovery of function to cellular mechanisms. Ann Anat 193:371–379PubMedCrossRefGoogle Scholar
  43. Rosenkranz K, Kumbruch S, Lebermann K, Marschner K, Jensen A, Dermietzel R, Meier C (2010) The chemokine SDF-1 / CXCL12 contributes to the 'homing' of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain. J Neurosci Res 88:1223–1233PubMedGoogle Scholar
  44. Sanchez-Ramos JR, Song S, Kamath SG, Zigova T, Willing A, Cardozo-Pelaez F, Stedeford T, Chopp M, Sanberg PR (2001) Expression of neural markers in human umbilical cord blood. Exp Neurol 171:109–115PubMedCrossRefGoogle Scholar
  45. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851PubMedGoogle Scholar
  46. Unal-Cevik I, Kilinc M, Gursoy-Ozdemir Y, Gurer G, Dalkara T (2004) Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res 1015:169–174PubMedCrossRefGoogle Scholar
  47. Volpe JJ (2008) Neurology of the newborn. Elsevier, PhiladelphiaGoogle Scholar
  48. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124PubMedCrossRefGoogle Scholar
  49. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88:1017–1025PubMedGoogle Scholar
  50. Wang X, Karlsson JO, Zhu C, Bahr BA, Hagberg H, Blomgren K (2001) Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate 79:172–179PubMedCrossRefGoogle Scholar
  51. Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T, Matsukawa N, Kaneko Y, Kuzmin-Nichols N, Ellovitch S, Cruz EL, Klasko SK, Sanberg CD, Sanberg PR, Borlongan CV (2010) Mannitol facilitates neurotrophic factor upregulation and behavioral recovery in neonatal hypoxic-ischemic rats with human umbilical cord blood grafts. J Cell Mol Med 14:914–921PubMedCrossRefGoogle Scholar
  52. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838PubMedCrossRefGoogle Scholar
  53. Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant 11:265–274PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Katja Rosenkranz
    • 1
  • Sandra Kumbruch
    • 2
  • Matthias Tenbusch
    • 3
  • Katrin Marcus
    • 1
  • Katrin Marschner
    • 4
  • Rolf Dermietzel
    • 2
  • Carola Meier
    • 5
  1. 1.Department of Functional ProteomicsRuhr-University BochumBochumGermany
  2. 2.Department of Neuroanatomy and Molecular Brain ResearchRuhr-University BochumBochumGermany
  3. 3.Department of Molecular and Medical VirologyRuhr-University BochumBochumGermany
  4. 4.Department of Gynecology and ObstetricsSt. Elisabeth-Hospital BochumBochumGermany
  5. 5.Department of Anatomy and Cell BiologySaarland UniversityHomburg/SaarGermany

Personalised recommendations