Cell and Tissue Research

, Volume 348, Issue 1, pp 131–140 | Cite as

Trps1 is necessary for normal temporomandibular joint development

  • Ikumi Michikami
  • Toshiya Fukushi
  • Shiho Honma
  • Seisuke Yoshioka
  • Shunji Itoh
  • Yasuteru Muragaki
  • Kojiro Kurisu
  • Takashi Ooshima
  • Satoshi Wakisaka
  • Makoto Abe
Regular Article

Abstract

Mutation of the human TRPS1 gene leads to trichorhinophalangeal syndrome (TRPS), which is characterized by an abnormal development of various organs including the craniofacial skeleton. Trps1 has recently been shown to be expressed in the jaw joints of zebrafish; however, whether Trps1 is expressed in the mammalian temporomandibular joint (TMJ), or whether it is necessary for TMJ development is unknown. We have analyzed (1) the expression pattern of Trps1 during TMJ development in mice and (2) TMJ development in Trps1 knockout animals. Trps1 is expressed in the maxillo-mandibular junction at embryonic day (E) 11.5. At E15.5, expression is restricted to the developing condylar cartilage and to the surrounding joint disc progenitor cells. In Trps1 knockout mice, the glenoid fossa of the temporal bone forms relatively normally but the condylar process is extremely small and the joint disc and cavities do not develop. The initiation of condyle formation is slightly delayed in the mutants at E14.5; however, at E18.5, the flattened chondrocyte layer is narrowed and most of the condylar chondrocytes exhibit precocious chondrocyte maturation. Expression of Runx2 and its target genes is expanded toward the condylar apex in the mutants. These observations underscore the indispensable role played by Trps1 in normal TMJ development in supporting the differentiation of disc and synoviocyte progenitor cells and in coordinating condylar chondrocyte differentiation.

Keywords

TRPS1 Temporomandibular Disc Runx2 Mouse 

Notes

Acknowledgments

We gratefully acknowledge Dr. Michael Naski for the clones, Dr. Hiroki Kurihara for critical discussion and Dr. Takashi Maeda for technical assistance.

Supplementary material

441_2012_1372_Fig8_ESM.jpg (113 kb)
Supplementary Fig. 1

Normal formation of incudo-malleal and incudo-stapedial junctions in Trps1 knockout mice at E18.5. Hematoxylin-eosin-stained coronal sections of incudo-malleal (a, b) and incudo-stapedial (c, d) junctions in the wild-type (a, c) and mutant (b, d) embryos (eam external acoustic meatus, in cartilage primordium of incus, m cartilage primordium of malleus, mc Meckel’s cartilage, scc superior semicircular canal, st cartilage primordium of stapes). ×50 (JPEG 112 kb)

441_2012_1372_MOESM1_ESM.tif (24.1 mb)
High resolution image file (TIFF 24658 kb)
441_2012_1372_Fig9_ESM.jpg (69 kb)
Supplementary Fig. 2

In situ hybridization for collagen genes in Trps1 knockout condylar cartilage at E18.5. Serial coronal sections of the wild-type (a, c, e) and mutant (b, d, f) embryos. In situ hybridization for Col1a1 (a, b), Col2a1 (c, d) and Col10a1 (e, f). The dotted line in c-f indicates the margin of the condyle. The solid line in e, f indicates the Col10a1-negative region in the condylar cartilage. ×100 (JPEG 68 kb)

441_2012_1372_MOESM2_ESM.tif (24.1 mb)
High resolution image file (TIFF 24658 kb)
441_2012_1372_Fig10_ESM.jpg (106 kb)
Supplementary Fig. 3

Alizarin red staining and gene expression analysis in Trps1 knockout condylar cartilage at E18.5. The dotted line in the image indicates the margin of the condyle. Alizarin red staining (a, b) and in situ hybridization (c-h) of the wild-type (a, c, e, g) and mutant (b, d, f, h) embryos. In situ hybridization on coronal sections for Runx2 (c, d), Ihh (e, f) and Ptc1 (g, h) genes (cd condyle, d joint disc, lc lower joint cavity, lpm lateral pterygoid muscle, uc upper joint cavity). ×100 (JPEG 105 kb)

441_2012_1372_MOESM3_ESM.tif (24.1 mb)
High resolution image file (TIFF 24659 kb)

References

  1. Abe M, Maeda T, Wakisaka S (2008) Retinoic acid affects craniofacial patterning by changing Fgf8 expression in the pharyngeal ectoderm. Dev Growth Differ 50:717–729PubMedCrossRefGoogle Scholar
  2. Abe M, Michikami I, Fukushi T, Abe A, Maeda Y, Ooshima T, Wakisaka S (2010) Hand2 regulates chondrogenesis in vitro and in vivo. Bone 46:1359–1368PubMedCrossRefGoogle Scholar
  3. Barnes RM, Firulli AB (2009) A twist of insight—the role of Twist-family bHLH factors in development. Int J Dev Biol 53:909–924PubMedCrossRefGoogle Scholar
  4. Clack JA (1997) The evolution of tetrapod ears and the fossil record. Brain Behav Evol 50:198–212PubMedCrossRefGoogle Scholar
  5. Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18:2404–2417PubMedCrossRefGoogle Scholar
  6. Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104:341–351PubMedCrossRefGoogle Scholar
  7. Itoh S, Kanno S, Gai Z, Suemoto H, Kawakatsu M, Tanishima H, Morimoto Y, Nishioka K, Hatamura I, Yoshida M, Muragaki Y (2008) Trps1 plays a pivotal role downstream of Gdf5 signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. Genes Cells 13:355–363PubMedCrossRefGoogle Scholar
  8. Kaneyama K, Segami N, Hatta T (2008) Congenital deformities and developmental abnormalities of the mandibular condyle in the temporomandibular joint. Congenit Anom Kyoto 48:118–125PubMedCrossRefGoogle Scholar
  9. Kunath M, Ludecke HJ, Vortkamp A (2002) Expression of Trps1 during mouse embryonic development. Gene Expr Patterns 2:119–122PubMedCrossRefGoogle Scholar
  10. Ludecke HJ, Schaper J, Meinecke P, Momeni P, Gross S, Holtum D von, Hirche H, Abramowicz MJ, Albrecht B, Apacik C, Christen HJ, Claussen U, Devriendt K, Fastnacht E, Forderer A, Friedrich U, Goodship TH, Greiwe M, Hamm H, Hennekam RC, Hinkel GK, Hoeltzenbein M, Kayserili H, Majewski F, Mathieu M, McLeod R, Midro AT, Moog U, Nagai T, Niikawa N, Orstavik KH, Plochl E, Seitz C, Schmidtke J, Tranebjaerg L, Tsukahara M, Wittwer B, Zabel B, Gillessen-Kaesbach G, Horsthemke B (2001) Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet 68:81–91PubMedCrossRefGoogle Scholar
  11. Malik TH, Von Stechow D, Bronson RT, Shivdasani RA (2002) Deletion of the GATA domain of TRPS1 causes an absence of facial hair and provides new insights into the bone disorder in inherited tricho-rhino-phalangeal syndromes. Mol Cell Biol 22:8592–8600PubMedCrossRefGoogle Scholar
  12. Mallo M (1998) Embryological and genetic aspects of middle ear development. Int J Dev Biol 42:11–22PubMedGoogle Scholar
  13. McLeod MJ (1980) Differential staining of cartilage and bone in whole mouse fetuses by Alcian blue and Alizarin red S. Teratology 22:299–301PubMedCrossRefGoogle Scholar
  14. Napierala D, Garcia-Rojas X, Sam K, Wakui K, Chen C, Mendoza-Londono R, Zhou G, Zheng Q, Lee B (2005) Mutations and promoter SNPs in RUNX2, a transcriptional regulator of bone formation. Mol Genet Metab 86:257–268PubMedCrossRefGoogle Scholar
  15. Napierala D, Sam K, Morello R, Zheng Q, Munivez E, Shivdasani RA, Lee B (2008) Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome. Hum Mol Genet 17:2244–2254PubMedCrossRefGoogle Scholar
  16. Nishioka K, Itoh S, Suemoto H, Kanno S, Gai Z, Kawakatsu M, Tanishima H, Morimoto Y, Hatamura I, Yoshida M, Muragaki Y (2008) Trps1 deficiency enlarges the proliferative zone of growth plate cartilage by upregulation of Pthrp. Bone 43:64–71PubMedCrossRefGoogle Scholar
  17. Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today 75:237–248PubMedCrossRefGoogle Scholar
  18. Piscopo DM, Johansen EB, Derynck R (2009) Identification of the GATA factor TRPS1 as a repressor of the osteocalcin promoter. J Biol Chem 284:31690–31703PubMedCrossRefGoogle Scholar
  19. Purcell P, Joo BW, Hu JK, Tran PV, Calicchio ML, O'Connell DJ, Maas RL, Tabin CJ (2009) Temporomandibular joint formation requires two distinct hedgehog-dependent steps. Proc Natl Acad Sci USA 106:18297–18302PubMedCrossRefGoogle Scholar
  20. Reinhold MI, Kapadia RM, Liao Z, Naski MC (2006) The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem 281:1381–1388PubMedCrossRefGoogle Scholar
  21. Rice R, Thesleff I, Rice DP (2005) Regulation of Twist, Snail, and Id1 is conserved between the developing murine palate and tooth. Dev Dyn 234:28–35PubMedCrossRefGoogle Scholar
  22. Shibukawa Y, Young B, Wu C, Yamada S, Long F, Pacifici M, Koyama E (2007) Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dyn 236:426–434PubMedCrossRefGoogle Scholar
  23. Spater D, Hill TP, O'Sullivan RJ, Gruber M, Conner DA, Hartmann C (2006) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133:3039–3049PubMedCrossRefGoogle Scholar
  24. Suemoto H, Muragaki Y, Nishioka K, Sato M, Ooshima A, Itoh S, Hatamura I, Ozaki M, Braun A, Gustafsson E, Fassler R (2007) Trps1 regulates proliferation and apoptosis of chondrocytes through Stat3 signaling. Dev Biol 312:572–581PubMedCrossRefGoogle Scholar
  25. Talbot JC, Johnson SL, Kimmel CB (2010) hand2 and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches. Development 137:2507–2517PubMedCrossRefGoogle Scholar
  26. Wuelling M, Kaiser FJ, Buelens LA, Braunholz D, Shivdasani RA, Depping R, Vortkamp A (2009) Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Dev Biol 328:40–53PubMedCrossRefGoogle Scholar
  27. Yamagami T, Molotkov A, Zhou CJ (2009) Canonical Wnt signaling activity during synovial joint development. J Mol Histol 40:311–316PubMedCrossRefGoogle Scholar
  28. Zhao Q, Eberspaecher H, Lefebvre V, De Crombrugghe B (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209:377–386PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ikumi Michikami
    • 1
    • 2
  • Toshiya Fukushi
    • 1
    • 5
  • Shiho Honma
    • 1
  • Seisuke Yoshioka
    • 3
  • Shunji Itoh
    • 4
  • Yasuteru Muragaki
    • 4
  • Kojiro Kurisu
    • 5
  • Takashi Ooshima
    • 2
  • Satoshi Wakisaka
    • 1
  • Makoto Abe
    • 1
  1. 1.Department of Oral Anatomy and Developmental BiologyOsaka University Graduate School of DentistryOsakaJapan
  2. 2.Department of Pediatric DentistryOsaka University Graduate School of DentistryOsakaJapan
  3. 3.Department of Restorative DentistryOsaka University Graduate School of DentistryOsakaJapan
  4. 4.First Department of PathologyWakayama Medical University Medical SchoolWakayamaJapan
  5. 5.Department of Judo TherapyYukioka School of Allied Health ProfessionsOsakaJapan

Personalised recommendations