Cell and Tissue Research

, Volume 351, Issue 2, pp 339–352

Intestinal proteases of free-living and parasitic astigmatid mites

  • Deborah C. Holt
  • Stewart T. G. Burgess
  • Simone L. Reynolds
  • Wajahat Mahmood
  • Katja Fischer


Among arthropod pests, mites are responsible for considerable damage to crops, humans and other animals. However, detailed physiological data on these organisms remain sparse, mainly because of their small size but possibly also because of their extreme diversity. Focusing on intestinal proteases, we draw together information from three distinct mite species that all feed on skin but have separately adapted to a free-living, a strictly ecto-parasitic and a parasitic lifestyle. A wide range of studies involving immunohistology, molecular biology, X-ray crystallography and enzyme biochemistry of mite gut proteases suggests that these creatures have diverged considerably as house dust mites, sheep scab mites and scabies mites. Each species has evolved a particular variation of a presumably ancestral repertoire of digestive enzymes that have become specifically adapted to their individual environmental requirements.


Protease Sarcoptes scabiei Psoroptes ovis Dermatophagoides pteronyssinus 


  1. Alexander JO (1984) Arthropods and human skin. Springer, BerlinGoogle Scholar
  2. Ando T, Homma R, Ino Y, Ito G, Miyahara A, Yanagihara T, Kimura H, Ikeda S, Yamakawa H, Iwaki M, Okumura Y, Suko M, Haida M, Okudaira H (1993) Trypsin-like protease of mites: purification and characterization of trypsin-like protease from mite faecal extract Dermatophagoides farinae. Relationship between trypsin-like protease and Der f III. Clin Exp Allergy 23:777–784PubMedGoogle Scholar
  3. Angus AC, Ong ST, Chew FT (2004) Sequence tag catalogs of dust mite-expressed genomes: utility in allergen and acarologic studies. Am J Pharmacogenomics 4:357–369PubMedGoogle Scholar
  4. Arlian LG (1988) Water balance and nutrient procurement of Sarcoptes scabiei var. canis (Acari: Sarcoptidae). J Med Entomol 25:64–68PubMedGoogle Scholar
  5. Arlian LG (1989) Biology, host relations, and epidemiology of Sarcoptes scabiei. Annu Rev Entomol 34:139–161PubMedGoogle Scholar
  6. Arlian LG (2002) Arthropod allergens and human health. Annu Rev Entomol 47:395–433PubMedGoogle Scholar
  7. Arlian LG, Morgan MS (2000) Serum antibody to Sarcoptes scabiei and house dust mite prior to and during infestation with S. scabiei. Vet Parasitol 90:315–326PubMedGoogle Scholar
  8. Arlian LG, Runyan RA, Estes SA (1984) Cross infestivity of Sarcoptes scabiei. J Am Acad Dermatol 10:979–986PubMedGoogle Scholar
  9. Arlian LG, Vyszenski-Moher DL, Gilmore AM (1988) Cross-antigenicity between Sarcoptes scabiei and the house dust mite, Dermatophagoides farinae (Acari: Sarcoptidae and Pyroglyphidae). J Med Entomol 25:240–247PubMedGoogle Scholar
  10. Arlian LG, Rapp CM, Morgan MS (1995) Resistance and immune response in scabies-infested hosts immunised with Dermatophagoides mites. Am J Trop Med Hyg 52:539–545PubMedGoogle Scholar
  11. Arlian L, Vyszenski-Moher DL, Rapp CM, Hull BE (1996) Production of Il-1α and Il-1β by human skin equivalents parasitized by Sarcoptes scabiei. J Parasitol 82:719–723PubMedGoogle Scholar
  12. Arlian LG, Morgan MS, Neal JS (2003) Modulation of cytokine expression in human keratinocytes and fibroblasts by extracts of scabies mites. Am J Trop Med Hyg 69:652–656PubMedGoogle Scholar
  13. Arruda LK, Vailes LD, Platts-Mills TA, Fernandez-Caldas E, Montealegre F, Lin KL, Chua KY, Rizzo MC, Naspitz CK, Chapman MD (1997) Sensitization to Blomia tropicalis in patients with asthma and identification of allergen Blo t 5. Am J Respir Crit Care Med 155:343–350PubMedGoogle Scholar
  14. Asokananthan N, Graham PT, Stewart DJ, Bakker AJ, Eidne KA, Thompson PJ, Stewart GA (2002) House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol 169:4572–4578PubMedGoogle Scholar
  15. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE (2002) Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci USA 99:990–995PubMedGoogle Scholar
  16. Basagana X, Sunyer J, Kogevinas M, Zock JP, Duran-Tauleria E, Jarvis D, Burney P, Anto JM (2004) Socioeconomic status and asthma prevalence in young adults: the European Community Respiratory Health Survey. Am J Epidemiol 160:178–188PubMedGoogle Scholar
  17. Bates P (2000) Differences between primary and secondary infestations with the sheep scab mite, Psoroptes ovis. Vet Rec 146:528–529PubMedGoogle Scholar
  18. Beckham SA, Boyd SE, Reynolds S, Willis C, Johnstone M, Mika A, Simerská P, Wijeyewickrema LC, Smith AI, Kemp DJ, Pike RN, Fischer K (2009) Characterization of a serine protease homologous to house dust mite group 3 allergens from the scabies mite Sarcoptes scabiei. J Biol Chem 284:34413–34422PubMedGoogle Scholar
  19. Bergstrom FC, Reynolds S, Johnstone M, Pike RN, Buckle AM, Kemp DJ, Fischer K, Blom AM (2009) Scabies mite inactivated serine protease paralogs inhibit the human complement system. J Immunol 182:7809–7817PubMedGoogle Scholar
  20. Best EA, Stedman KE, Bozic CM, Hunter SW, Vailes L, Chapman MD, McCall CA, McDermott MJ (2000) A recombinant group 1 house dust mite allergen, rDer f 1, with biological activities similar to those of the native allergen. Protein Expr Purif 20:462–471PubMedGoogle Scholar
  21. Bisdorff B, Wall R, Milnes A (2006) Prevalence and regional distribution of scab, lice and blowfly strike in Great Britain. Vet Rec 158:749–752PubMedGoogle Scholar
  22. Broek AH van den, Huntley JF (2003) Sheep scab: the disease, pathogenesis and control. J Comp Pathol 128:79–91PubMedGoogle Scholar
  23. Broek AH van den, Else RW, Huntley JF, Machell J, Taylor MA, Miller HR (2004) Early innate and longer-term adaptive cutaneous immunoinflammatory responses during primary infestation with the sheep scab mite, Psoroptes ovis. J Comp Pathol 131:318–329PubMedGoogle Scholar
  24. Brown A, Girod N, Billett EE, Pritchard DI (1999) Necator americanus (human hookworm) aspartyl proteinases and digestion of skin macromolecules during skin penetration. Am J Trop Med Hyg 60:840–847PubMedGoogle Scholar
  25. Burgess I (1994) Sarcoptes scabiei and scabies. Adv Parasitol 33:235–292PubMedGoogle Scholar
  26. Burgess ST, Frew D, Nunn F, Watkins CA, McNeilly TN, Nisbet AJ, Huntley JF (2010) Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis. BMC Genomics 11:624PubMedGoogle Scholar
  27. Burgess ST, McNeilly TN, Watkins CA, Nisbet AJ, Huntley JF (2011) Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis. PLoS One 6:e24402PubMedGoogle Scholar
  28. Cabrera R, Dahl MV (1993) The immunology of scabies. Semin Dermatol 12:15–21PubMedGoogle Scholar
  29. Chapman MD, Pomes A, Breiteneder H, Ferreira F (2007a) Nomenclature and structural biology of allergens. J Allergy Clin Immunol 119:414–420PubMedGoogle Scholar
  30. Chapman MD, Wunschmann S, Pomes A (2007b) Proteases as Th2 adjuvants. Curr Allergy Asthma Rep 7:363–367PubMedGoogle Scholar
  31. Chew FT, Yi FC, Chua KY, Fernandez-Caldas E, Arruda LK, Chapman MD, Lee BW (1999a) Allergenic differences between the domestic mites Blomia tropicalis and Dermatophagoides pteronyssinus. Clin Exp Allergy 29:982–988PubMedGoogle Scholar
  32. Chew FT, Zhang L, Ho TM, Lee BW (1999b) House dust mite fauna of tropical Singapore. Clin Exp Allergy 29:201–206PubMedGoogle Scholar
  33. Christopherson J (1986) Epidemiology of scabies. Parasitol Today 2:247–248Google Scholar
  34. Chua KY, Stewart GA, Thomas WR, Simpson RJ, Dilworth RJ, Plozza TM, Turner KJ (1988) Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J Exp Med 167:175–182PubMedGoogle Scholar
  35. Chua KY, Cheong N, Kuo IC, Lee BW, Yi FC, Huang CH, Liew LN (2007) The Blomia tropicalis allergens. Protein Pept Lett 14:325–333PubMedGoogle Scholar
  36. Cornman SR, Schatz MC, Johnston SJ, Chen YP, Pettis J, Hunt G, Bourgeois L, Elsik C, Anderson D, Grozinger CM, Evans JD (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11:602PubMedGoogle Scholar
  37. Currie BJ, Maguire GP, Wood YK (1995) Ivermectin and crusted (Norwegian) scabies. Med J Aust 163:559–560PubMedGoogle Scholar
  38. Dahl MV (1983) The immunology of scabies. Ann Allergy 51:560–564PubMedGoogle Scholar
  39. DeLoach JR, Wright FC (1981) Ingestion of rabbit erythrocytes containing 51Cr-labeled hemoglobin by Psoroptes spp. (Acari: Psoroptidae) that originated on cattle, mountain sheep, or rabbits. J Med Entomol 18:345–348PubMedGoogle Scholar
  40. Dermauw W, Van Leeuwen T, Vanholme B, Tirry L (2009) The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods. BMC Genomics 10:107PubMedGoogle Scholar
  41. Dougall A, Holt DC, Fischer K, Currie BJ, Kemp DJ, Walton SF (2005) Identification and characterization of Sarcoptes scabiei and Dermatophagoides pteronyssinus glutathione S-transferases: implication as a potential major allergen in crusted scabies. Am J Trop Med Hyg 73:977–984PubMedGoogle Scholar
  42. Elder BL, Arlian LG, Morgan MS (2006) Sarcoptes scabiei (Acari: Sarcoptidae) mite extract modulates expression of cytokines and adhesion molecules by human dermal microvascular endothelial cells. J Med Entomol 43:910–915PubMedGoogle Scholar
  43. Elder BL, Arlian LG, Morgan MS (2009) Modulation of human dermal microvascular endothelial cells by Sarcoptes scabiei in combination with proinflammatory cytokines, histamine, and lipid-derived biologic mediators. Cytokine 47:103–111PubMedGoogle Scholar
  44. Estes SA, Estes J (1993) Therapy of scabies: nursing homes, hospitals, and the homeless. Semin Dermatol 12:26–33PubMedGoogle Scholar
  45. Fain A (1978) Epidemiological problems of scabies. Int J Dermatol 17:20–30PubMedGoogle Scholar
  46. Fajt ML, Wenzel SE (2009) Asthma phenotypes in adults and clinical implications. Expert Rev Respir Med 3:607–625PubMedGoogle Scholar
  47. Falk ES (1980) Serum immunoglobulin values in patients with scabies. Br J Dermatol 102:57–61PubMedGoogle Scholar
  48. Falk E, Bolle R (1980) IgE antibodies to house dust mite in patients with scabies. Br J Dermatol 102:283–288Google Scholar
  49. Falk E, Eide T (1981) Histologic and clinical findings in human scabies. Int J Dermatol 20:600–605PubMedGoogle Scholar
  50. Falk ES, Dale S, Bolle R, Haneberg B (1981) Antigens common to scabies and house dust mites. Allergy 36:233–238PubMedGoogle Scholar
  51. Feldmeier H, Heukelbach J (2009) Epidermal parasitic skin diseases: a neglected category of poverty-associated plagues. Bull WHO 87:152–159PubMedGoogle Scholar
  52. Fischer K, Holt DC, Harumal P, Currie BJ, Walton SF, Kemp DJ (2003a) Generation and characterization of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. Am J Trop Med Hyg 68:61–64PubMedGoogle Scholar
  53. Fischer K, Holt DC, Wilson P, Davis J, Hewitt V, Johnson M, McGrath A, Currie BJ, Walton SF, Kemp DJ (2003b) Normalization of a cDNA library cloned in lambda ZAP by a long PCR and cDNA reassociation procedure. Biotechniques 34:254Google Scholar
  54. Fischer K, Langendorf CG, Irving JA, Reynolds S, Willis C, Beckham S, Law RH, Yang S, Bashtannyk-Puhalovich TA, McGowan S, Whisstock JC, Pike RN, Kemp DJ, Buckle AM (2009) Structural mechanisms of inactivation in scabies mite serine protease paralogues. J Mol Biol 390:635–645PubMedGoogle Scholar
  55. Gogna NK, Lee KC, Howe DW (1985) Norwegian scabies in Australian Aborigines. Med J Aust 142:140–142PubMedGoogle Scholar
  56. Goldsby RA, Kindt TJ, Kuby J, Osborne BA (2000) Immunology, 5th edn. Freeman, New YorkGoogle Scholar
  57. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Ngoc PC, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace RM, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492PubMedGoogle Scholar
  58. Gregory LG, Lloyd CM (2011) Orchestrating house dust mite-associated allergy in the lung. Trends Immunol 32:402–411PubMedGoogle Scholar
  59. Hales BJ, Martin AC, Pearce LJ, Laing IA, Hayden CM, Goldblatt J, Le Souef PN, Thomas WR (2006) IgE and IgG anti-house dust mite specificities in allergic disease. J Allergy Clin Immunol 118:361–367PubMedGoogle Scholar
  60. Hales BJ, Martin AC, Pearce LJ, Rueter K, Zhang G, Khoo SK, Hayden CM, Bizzintino J, McMinn P, Geelhoed GC, Lee WM, Goldblatt J, Laing IA, LeSouef PN, Thomas WR (2009) Anti-bacterial IgE in the antibody responses of house dust mite allergic children convalescent from asthma exacerbation. Clin Exp Allergy 39:1170–1178PubMedGoogle Scholar
  61. Halleux S de, Stura E, VanderElst L, Carlier V, Jacquemin M, Saint-Remy JM (2006) Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J Allergy Clin Immunol 117:571–576PubMedGoogle Scholar
  62. Halliday RB, O'Connor BM, Baker AS (2000) Global diversity of mites. In: Raven PH, Williams T (eds) Nature and human society: the quest for a sustainable world. Proceedings of the 1997 Forum on Biodiversity. National Academy Press, Washington, D.C.Google Scholar
  63. Hamilton KA, Nisbet AJ, Lehane MJ, Taylor MA, Billingsley PF (2003) A physiological and biochemical model for digestion in the ectoparasitic mite, Psoroptes ovis (Acari: Psoroptidae). Int J Parasitol 33:773–785PubMedGoogle Scholar
  64. Harumal P, Morgan M, Walton SF, Holt DC, Rode J, Arlian LG, Currie BJ, Kemp DJ (2003) Identification of a homologue of a house dust mite allergen in a cDNA library from Sarcoptes scabiei var hominis and evaluation of its vaccine potential in a rabbit/S. scabiei var. canis model. Am J Trop Med Hyg 68:54–60PubMedGoogle Scholar
  65. Hejazi N, Mehregan AH (1975) Scabies: histological study of inflammatory lesions. Arch Dermatol 111:37–39PubMedGoogle Scholar
  66. Hengge UR, Currie BJ, Jager G, Lupi O, Schwartz RA (2006) Scabies: a ubiquitous neglected skin disease. Lancet Infect Dis 6:769–779PubMedGoogle Scholar
  67. Hewitt CRA, Brown AP, Hart BJ, Pritchard DI (1995) A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J Exp Med 182:1537–1544PubMedGoogle Scholar
  68. Heymann PW, Chapman MD, Aalberse RC, Fox JW, Platts-Mills TA (1989) Antigenic and structural analysis of group II allergens (Der f II and Der p II) from house dust mites (Dermatophagoides spp). J Allergy Clin Immunol 83:1055–1067PubMedGoogle Scholar
  69. Hoefling KK, Schroeter AL (1980) Dermatoimmunopathology of scabies. J Am Acad Dermatol 3:237–240PubMedGoogle Scholar
  70. Holness L, DeKoven JG, Nethercott JR (1992) Scabies in chronic health care institutions. Arch Dermatol 128:1257–1260PubMedGoogle Scholar
  71. Holt DC, Fischer K, Allen GE, Wilson D, Wilson P, Slade R, Currie BJ, Walton SF, Kemp DJ (2003) Mechanisms for a novel immune evasion strategy in the scabies mite Sarcoptes scabiei: a multigene family of inactivated serine proteases. J Invest Dermatol 121:1419–1424PubMedGoogle Scholar
  72. Holt DC, Fischer K, Pizzutto SJ, Currie BJ, Walton SF, Kemp DJ (2004) A multigene family of inactivated cysteine proteases in Sarcoptes scabiei. J Invest Dermatol 123:240–241PubMedGoogle Scholar
  73. Jacquet A (2011) The role of the house dust mite-induced innate immunity in development of allergic response. Int Arch Allergy Immunol 155:95–105PubMedGoogle Scholar
  74. Jin-gang A, Sheng-xiang X, Sheng-bin X, Jun-min W, Song-mei G, Ying-ying D, Jung-hong M, Qing-qiang X, Xiao-peng W (2010) Quality of life of patients with scabies. J Eur Acad Dermatol Venereol 24:1187–1191PubMedGoogle Scholar
  75. Jones J, Jenkins T, Webb L, Davies A, Bates P (2008) Psoroptic mange in cattle in south Wales. Vet Rec 162:460PubMedGoogle Scholar
  76. Kenyon F, Knox D (2002) The proteinases of Psoroptes ovis, the sheep scab mite—their diversity and substrate specificity. Vet Parasitol 105:317–325PubMedGoogle Scholar
  77. Kenyon F, Welsh M, Parkinson J, Whitton C, Blaxter ML, Knox DP (2003) Expressed sequence tag survey of gene expression in the scab mite Psoroptes ovis-allergens, proteases and free-radical scavengers. Parasitology 126:451–460PubMedGoogle Scholar
  78. Kidon MI, Chiang WC, Liew WK, Ong TC, Tiong YS, Wong KN, Angus AC, Ong ST, Gao YF, Reginald K, Bi XZ, Shang HS, Chew FT (2011) Mite component-specific IgE repertoire and phenotypes of allergic disease in childhood: the tropical perspective. Pediatr Allergy Immunol 22:202–210PubMedGoogle Scholar
  79. King C, Simpson RJ, Moritz RL, Reed GE, Thompson PJ, Stewart GA (1996) The isolation and characterization of a novel collagenolytic serine protease allergen (Der p 9) from the dust mite Dermatophagoides pteronyssinus. J Allergy Clin Immunol 98:739–747PubMedGoogle Scholar
  80. King C, Brennan S, Thompson PJ, Stewart GA (1998) Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 161:3645–3651PubMedGoogle Scholar
  81. Kirkwood AC (1986) History, biology and control of sheep scab. Parasitol Today 2:302–307PubMedGoogle Scholar
  82. Kolar KA, Rapini RP (1991) Crusted (Norwegian) scabies. Am Fam Prac 44:1317–1321Google Scholar
  83. Lee AJ, Isaac RE, Coates D (1999) The construction of a cDNA expression library for the sheep scab mite Psoroptes ovis. Vet Parasitol 83:241–252PubMedGoogle Scholar
  84. Lee AJ, Machell J, Van Den Broek AH, Nisbet AJ, Miller HR, Isaac RE, Huntley JF (2002) Identification of an antigen from the sheep scab mite, Psoroptes ovis, homologous with house dust mite group I allergens. Parasite Immunol 24:413–422PubMedGoogle Scholar
  85. Levi A, Mumcuoglu K, Ingber A, Enk C (2011) Assessment of Sarcoptes scabiei viability in vivo by reflectance confocal microscopy. Lasers Med Sci 26:291–292PubMedGoogle Scholar
  86. Ljunggren EL, Nilsson D, Mattsson JG (2003) Expressed sequence tag analysis of Sarcoptes scabiei. Parasitology 127:139–145PubMedGoogle Scholar
  87. Mariana A, Ho TM, Sofian-Azirun M, Wong AL (2000) House dust mite fauna in the Klang Valley, Malaysia. Southeast Asian J Trop Med Public Health 31:712–721PubMedGoogle Scholar
  88. Mathieson BR, Lehane MJ (2002) Ultrastructure of the alimentary canal of the sheep scab mite, Psoroptes ovis (Acari: Psoroptidae). Vet Parasitol 104:151–166PubMedGoogle Scholar
  89. Mattsson JG, Ljunggren EL, Bergstrom K (2001) Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression. Parasitology 122:555–562PubMedGoogle Scholar
  90. McNair CM, Billingsley PF, Nisbet AJ, Knox DP (2010) Feeding-associated gene expression in sheep scab mites (Psoroptes ovis). Vet Res 41:16PubMedGoogle Scholar
  91. Mellanby K (1941) The transmission of scabies. BMJ 2:405–406PubMedGoogle Scholar
  92. Mellanby K (1943) Oxford War Manuals: Scabies. Oxford University Press, LondonGoogle Scholar
  93. Mellanby K (1944) The development of symptoms, parasitic infection and immunity in human scabies. Parasitology 35:197–206Google Scholar
  94. Meno K, Thorsted PB, Ipsen H, Kristensen O, Larsen JN, Spangfort MD, Gajhede M, Lund K (2005) The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J Immunol 175:3835–3845PubMedGoogle Scholar
  95. Mika A, Goh P, Holt DC, Kemp DJ, Fischer K (2011) Scabies mite peritrophins are potential targets of human host innate immunity. PLoS Negl Trop Dis 5:e1331PubMedGoogle Scholar
  96. Moberg SA, Lowhagen GBE, Hersle KS (1984) An epidemic of scabies with unusual features and treatment resistance in nursing home. J Am Acad Dermatol 11:242–244PubMedGoogle Scholar
  97. Morgan MS, Arlian LG (2006) Enzymatic activity in extracts of allergy-causing astigmatid mites. J Med Entomol 43:1200–1207PubMedGoogle Scholar
  98. Morgan MS, Arlian LG, Estes SA (1997) Skin test and radioallergosorbent test characteristics of scabietic patients. Am J Trop Med Hyg 57:190–196PubMedGoogle Scholar
  99. Mounsey KE, Holt DC, McCarthy J, Walton SF (2006) Identification of ABC transporters in Sarcoptes scabiei. Parasitology 132:883–892PubMedGoogle Scholar
  100. Mounsey KE, Dent JA, Holt DC, McCarthy J, Currie BJ, Walton SF (2007) Molecular characterisation of a pH gated chloride channel from Sarcoptes scabiei. Invert Neurosci 7:149–156PubMedGoogle Scholar
  101. Mounsey KE, Willis C, Burgess STG, Holt DC, McCarthy J, Fischer K (2012) Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermataphagoides pteronyssinus. Parasit Vectors 5:3PubMedGoogle Scholar
  102. Mullins JS, Arlian LG, Morgan MS (2009) Extracts of Sarcoptes scabiei De Geer downmodulate secretion of IL-8 by skin keratinocytes and fibroblasts and of GM-CSF by fibroblasts in the presence of proinflammatory cytokines. J Med Entomol 46:845–851PubMedGoogle Scholar
  103. Nisbet AJ, Billingsley PF (1999) Hydrolytic enzymes of Psoroptes cuniculi (Delafond). Insect Biochem Mol Biol 29:25–32PubMedGoogle Scholar
  104. Nisbet AJ, Billingsley PF (2000) A comparative survey of the hydrolytic enzymes of ectoparasitic and free-living mites. Int J Parasitol 30:19–27PubMedGoogle Scholar
  105. Nisbet AJ, Billingsley PF (2002) Characterisation of aminopeptidase activity in scab mites (Psoroptes spp.). Insect Biochem Mol Biol 32:1123–1131PubMedGoogle Scholar
  106. Nisbet AJ, Huntley JF (2006) Progress and opportunities in the development of vaccines against mites, fleas and myiasis-causing flies of veterinary importance. Parasite Immunol 28:165–172PubMedGoogle Scholar
  107. Nisbet AJ, MacKellar A, Wright HW, Brennan GP, Chua KY, Cheong N, Thomas JE, Huntley JF (2006) Molecular characterization, expression and localization of tropomyosin and paramyosin immunodominant allergens from sheep scab mites (Psoroptes ovis). Parasitology 133:515–523PubMedGoogle Scholar
  108. Nisbet AJ, MacKellar A, McLean K, Brennan GP, Huntley JF (2007) Eukaryotic expression of recombinant Pso o 1, an allergen from Psoroptes ovis, and its localization in the mite. Parasitology 134:83–89PubMedGoogle Scholar
  109. O'Brien DJ, Gray JS, O'Reilly PF (1994) Examination of possible transmission of sheep scab mite Psoroptes ovis between host species. Vet Res Commun 18:113–117PubMedGoogle Scholar
  110. Oort E van, Heer PG de, Leeuwen WA van, Derksen NI, Muller M, Huveneers S, Aalberse RC, Ree R van (2002) Maturation of Pichia pastoris-derived recombinant pro-Der p 1 induced by deglycosylation and by the natural cysteine protease Der p 1 from house dust mite. Eur J Biochem 269:671–679PubMedGoogle Scholar
  111. Pasay C, Walton S, Fischer K, Holt D, McCarthy J (2006) PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis). Am J Trop Med Hyg 74:649–657PubMedGoogle Scholar
  112. Pasay C, Arlian L, Morgan M, Vyszenski-Moher D, Rose A, Holt D, Walton S, McCarthy J (2008) High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites. Med Vet Entomol 22:82–88PubMedGoogle Scholar
  113. Ramos-e-Silva M (1998) Giovan Cosimo Bonomo (1663–1696): discoverer of the etiology of scabies. Int J Dermatol 37:625–630PubMedGoogle Scholar
  114. Rapp CM, Morgan MS, Arlian LG (2006) Presence of host immunoglobulin in the gut of Sarcoptes scabiei (Acari: Sarcoptidae). J Med Entomol 43:539–542PubMedGoogle Scholar
  115. Rawlings ND, Barrett AJ (1994) Families of serine peptidases. Methods Enzymol 244:19–61PubMedGoogle Scholar
  116. Roberts LJ, Huffam SE, Walton SF, Currie BJ (2005) Crusted scabies: clinical and immunological findings in seventy-eight patients and a review of the literature. J Infect 50:375–381PubMedGoogle Scholar
  117. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21PubMedGoogle Scholar
  118. Salo OP, Reunala T, Kalimo T, Rantanen T (1982) Immunoglobulin and complement deposits in the skin and circulating immune complexes in scabies. Acta Derm Venereol (Stockh) 62:73–75Google Scholar
  119. Schulz O, Laing P, Sewell HF, Shakib F (1995) Der p I, a major allergen of the house dust mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23). Eur J Immunol 25:3191–3194PubMedGoogle Scholar
  120. Schulz O, Sewell HF, Shakib F (1998) Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J Exp Med 187:271–275PubMedGoogle Scholar
  121. Shakib F, Schulz O, Sewell H (1998) A mite subversive: cleavage of CD23 and CD25 by Der p 1 enhances allergenicity. Immunol Today 19:313–316PubMedGoogle Scholar
  122. Simpson A, Green R, Custovic A, Woodcock A, Arruda LK, Chapman MD (2003) Skin test reactivity to natural and recombinant Blomia and Dermatophagoides spp. allergens among mite allergic patients in the UK. Allergy 58:53–56PubMedGoogle Scholar
  123. Sinclair AN, Filan SJ (1991) Confirmation of degenerative effects on psoroptic mites from scab lesions. Vet Rec 129:492PubMedGoogle Scholar
  124. Smith WA, Chua KY, Kuo MC, Rogers BL, Thomas WR (1994) Cloning and sequencing of the Dermatophagoides pteronyssinus group III allergen, Der p III. Clin Exp Allergy 24:220–228PubMedGoogle Scholar
  125. Smith W, Mills K, Hazell L, Hart B, Thomas W (1999) Molecular analysis of the group 1 and 2 allergens from the house dust mite, Euroglyphus maynei. Int Arch Allergy Immunol 118:15–22PubMedGoogle Scholar
  126. Smith WD, Broek A van den, Huntley J, Pettit D, Machell J, Miller HR, Bates P, Taylor M (2001) Approaches to vaccines for Psoroptes ovis (sheep scab). Res Vet Sci 70:87–91PubMedGoogle Scholar
  127. Smith WD, Bates P, Pettit DM, Van Den Broek A, Taylor MA (2002) Attempts to immunize sheep against the scab mite, Psoroptes ovis. Parasite Immunol 24:303–310PubMedGoogle Scholar
  128. Stewart GA, Thompson PJ, Simpson RJ (1989) Protease antigens from house dust mite. Lancet 2:154–155PubMedGoogle Scholar
  129. Stewart GA, Bird CH, Krska KD, Colloff MJ, Thompson PJ (1992a) A comparative study of allergenic and potentially allergenic enzymes from Dermatophagoides pteronyssinus, D. farinae and Euroglyphus maynei. Exp Appl Acarol 16:165–180PubMedGoogle Scholar
  130. Stewart GA, Ward LD, Simpson RJ, Thompson PJ (1992b) The group III allergen from the house dust mite Dermatophagoides pteronyssinus is a trypsin-like enzyme. Immunology 75:29–35PubMedGoogle Scholar
  131. Stewart GA, Kollinger MR, King CM, Thompson PJ (1994) A comparative study of three serine proteases from Dermatophagoides pteronyssinus and D. farinae. Allergy 49:553–560PubMedGoogle Scholar
  132. Stromberg PC, Fisher WF (1986) Dermatopathology and immunity in experimental Psoroptes ovis (Acari: Psoroptidae) infestation of naive and previously exposed Hereford cattle. Am J Vet Res 47:1551–1559PubMedGoogle Scholar
  133. Sun BQ, Wu A, Chan A, Chik S, Wong D, Zhong NS (2004) House dust mite allergen (Derp1 and Blot5) levels in asthmatics’ home in Hongkong. Chin Med Sci J 19:185–188PubMedGoogle Scholar
  134. Sun G, Stacey M, Schmidt M, Mori L, Mattoli S (2001) Interaction of mite allergens Der P3 and Der P9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 167:1014–1021PubMedGoogle Scholar
  135. Sweatman GK (1958) Biology of Otodectes cynotis, the ear canker mite of carnivores. Can J Zool 36:849–862Google Scholar
  136. Takai T, Kato T, Yasueda H, Okumura K, Ogawa H (2005) Analysis of the structure and allergenicity of recombinant pro- and mature Der p 1 and Der f 1: major conformational IgE epitopes blocked by prodomains. J Allergy Clin Immunol 115:555–563PubMedGoogle Scholar
  137. Taplin D, Meinking TL, Chen JA, Sanchez R (1990) Comparison of crotamiton 10 % cream (eurax) and permethrin 5 % cream (elimite) for the treatment of scabies in children. Ped Dermatol 7:67–73Google Scholar
  138. Temeyer KB, Soileau LC, Pruett JH (2002) Cloning and sequence analysis of a cDNA encoding Pso o II, a mite group II allergen of the sheep scab mite (Acari: Psoroptidae). J Med Entomol 39:384–391PubMedGoogle Scholar
  139. Thomas WR, Smith W (1999) Towards defining the full spectrum of important house dust mite allergens. Clin Exp Allergy 29:1583–1587PubMedGoogle Scholar
  140. Thomas WR, Smith WA, Hales BJ, Mills KL, O'Brien RM (2002) Characterization and immunobiology of house dust mite allergens. Int Arch Allergy Immunol 129:1–18PubMedGoogle Scholar
  141. Thomas WR, Heinrich TK, Smith WA, Hales BJ (2007) Pyroglyphid house dust mite allergens. Protein Pept Lett 14:943–953PubMedGoogle Scholar
  142. Thomas WR, Hales BJ, Smith WA (2010) House dust mite allergens in asthma and allergy. Trends Mol Med 16:321–328PubMedGoogle Scholar
  143. Tomee JF, Weissenbruch R van, Monchy JG de, Kauffman HF (1998) Interactions between inhalant allergen extracts and airway epithelial cells: effect on cytokine production and cell detachment. J Allergy Clin Immunol 102:75–85PubMedGoogle Scholar
  144. Tovey ER, Chapman MD, Platts-Mills TA (1981) Mite faeces are a major source of house dust allergens. Nature 289:592–593PubMedGoogle Scholar
  145. Van Neste D (1984) Intraepidermal localisation of scabies mites overlooked. J Am Acad Dermatol 10:676–677PubMedGoogle Scholar
  146. Van Neste D, Lachapelle JM (1981) Host-parasite relationships in hyperkeratotic (Norwegian) scabies: pathological and immunological findings. Br J Dermatol 105:667–678PubMedGoogle Scholar
  147. Walton SF (2010) The immunology of susceptibility and resistance to scabies. Parasite Immunol 32:532–540PubMedGoogle Scholar
  148. Walton S, McBroom J, Mathews J, Kemp D, Currie B (1999a) Crusted scabies: a molecular analysis of Sarcoptes scabiei var. hominis populations in patients with repeated infestations. Clin Infect Dis 29:1226–1230PubMedGoogle Scholar
  149. Walton SF, Choy JL, Bonson A, Valle A, McBroom J, Taplin D, Arlian L, Mathews JD, Currie B, Kemp DJ (1999b) Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in northern Australia. Am J Trop Med Hyg 61:542–547PubMedGoogle Scholar
  150. Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, Morgan M, Currie BJ, Kemp DJ (2004a) Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parasitol 34:839–849PubMedGoogle Scholar
  151. Walton SF, Holt DC, Currie BJ, Kemp DJ (2004b) Scabies: new future for a neglected disease. Adv Parasitol 57:309–376PubMedGoogle Scholar
  152. Walton SF, Beroukas D, Roberts-Thomson P, Currie BJ (2008) New insights into disease pathogenesis in crusted (Norwegian) scabies: the skin immune response in crusted scabies. Br J Dermatol 158:1247–1255PubMedGoogle Scholar
  153. Walton SF, Pizzutto S, Slender A, Viberg L, Holt D, Hales BJ, Kemp DJ, Currie BJ, Rolland JM, O'Hehir R (2010) Increased allergic immune response to Sarcoptes scabiei antigens in crusted versus ordinary scabies. Clin Vaccine Immunol 17:1428–1438PubMedGoogle Scholar
  154. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123–133PubMedGoogle Scholar
  155. Weghofer M, Dall'Antonia Y, Grote M, Stocklinger A, Kneidinger M, Balic N, Krauth MT, Fernandez-Caldas E, Thomas WR, van Hage M, Vieths S, Spitzauer S, Horak F, Svergun DI, Konarev PV, Valent P, Thalhamer J, Keller W, Valenta R, Vrtala S (2008a) Characterization of Der p 21, a new important allergen derived from the gut of house dust mites. Allergy 63:758–767PubMedGoogle Scholar
  156. Weghofer M, Thomas WR, Kronqvist M, Mari A, Purohit A, Pauli G, Horak F, Gronlund H, Hage M van, Valenta R, Vrtala S (2008b) Variability of IgE reactivity profiles among European mite allergic patients. Eur J Clin Invest 38:959–965PubMedGoogle Scholar
  157. Williamson A, Brindley P, Abbenante G, Prociv P, Berry C, Girdwood K, Pritchard D, Fairlie D, Hotez P, Dalton J, Loukas A (2002) Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and its potential contribution to host specificity. FASEB J 16:1458–1460PubMedGoogle Scholar
  158. Williamson AL, Brindley PJ, Loukas A (2003) Hookworm cathepsin D aspartic proteases: contributing roles in the host-specific degradation of serum proteins and skin macromolecules. Parasitology 126:179–185PubMedGoogle Scholar
  159. Willis C, Fischer K, Walton SF, Currie BJ, Kemp DJ (2006) Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces. Am J Trop Med Hyg 75:683–687PubMedGoogle Scholar
  160. Yasueda H, Mita H, Akiyama K, Shida T, Ando T, Sugiyama S, Yamakawa H (1993) Allergens from Dermatophagoides mites with chymotryptic activity. Clin Exp Allergy 23:384–390PubMedGoogle Scholar
  161. Yasuhara T, Takai T, Yuuki T, Okudaira H, Okumura Y (2001a) Biologically active recombinant forms of a major house dust mite group 1 allergen Der f 1 with full activities of both cysteine protease and IgE binding. Clin Exp Allergy 31:116–124PubMedGoogle Scholar
  162. Yasuhara T, Takai T, Yuuki T, Okudaira H, Okumura Y (2001b) Cloning and expression of cDNA encoding the complete prepro-form of an isoform of Der f 1, the major group 1 allergen from house dust mite Dermatophagoides farinae. Biosci Biotechnol Biochem 65:563–569PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Deborah C. Holt
    • 1
  • Stewart T. G. Burgess
    • 2
  • Simone L. Reynolds
    • 3
    • 4
  • Wajahat Mahmood
    • 1
  • Katja Fischer
    • 3
  1. 1.Menzies School of Health ResearchCharles Darwin UniversityCasuarinaAustralia
  2. 2.Parasitology DivisionMoredun Research InstituteEdinburghScotland, UK
  3. 3.Infectious Diseases ProgramQueensland Institute of Medical Research, PO Royal Brisbane HospitalBrisbaneAustralia
  4. 4.School of Veterinary SciencesUniversity of QueenslandGattonAustralia

Personalised recommendations