Advertisement

Cell and Tissue Research

, Volume 348, Issue 2, pp 295–307 | Cite as

The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds

  • Mareike Barth
  • Steffen Rickelt
  • Edeltraut Noffz
  • Stefanie Winter-Simanowski
  • Heiner Niemann
  • Payam Akhyari
  • Artur Lichtenberg
  • Werner Wilhelm FrankeEmail author
Regular Article

Abstract

The interstitial cells of cardiac valves represent one of the most frequent cell types in the mammalian heart. In order to provide a cell and molecular biological basis for the growth of isolated valvular interstitial cells (VICs) in cell culture and for the use in re-implantation surgery we have examined VICs in situ and in culture, in fetal, postnatal and adult hearts, in re-associations with scaffolds of extracellular matrix (ECM) material and decellularized heart valves. In all four mammalian species examined (human, bovine, porcine and ovine), the typical mesenchymal-type cell-cell adherens junctions (AJs) connecting VICs appear as normal N-cadherin based puncta adhaerentia. Their molecular ensemble, however, changes under various growth conditions insofar as plakophilin-2 (Pkp2), known as a major cytoplasmic plaque component of epithelial desmosomes, is recruited to and integrated in the plaques of VIC-AJs as a major component under growth conditions characterized by enhanced proliferation, i.e., in fetal heart valves and in cell cultures. Upon re-seeding onto decellularized heart valves or in stages of growth in association with artificial scaffolds, Pkp2 is — for the most part — lost from the AJs. As Pkp2 has recently also been detected in AJs of cardiac myxomata and diverse other mesenchymal tumors, the demonstrated return to the normal Pkp2-negative state upon re-association with ECM scaffolds and decellularized heart valves may now provide a safe basis for the use of cultured VICs in valve replacement surgery. Even more surprising, this type of transient acquisition of Pkp2 has also been observed in distinct groups of endothelial cells of the endocardium, where it seems to correspond to the cell type ready for endothelial–mesenchymal transition (EMT).

Keywords

Adherens junctions Plakophilin-2 Puncta adhaerentia Valvular interstitial cells Heart valves 

Abbreviations

AJ

adherens junction

ECM

extracellular matrix

IP

immunoprecipitation

Pkp2

plakophilin-2

VICs

valvular interstitial cells

EMT

endothelial–mesenchymal transition

Notes

Acknowledgements

Some parts of the present report are from the PhD thesis of Mareike Barth (2011). The work was supported in parts by the German Cancer Foundation (Deutsche Krebshilfe, grants 10-2049-Fr1 and 106976 to WWF) and the Federal Ministry for Research and Technology (START-MSC; grant 01GN0942).

References

  1. Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J, Preuss K, Lichtenberg A (2011) The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods 17:915–926PubMedCrossRefGoogle Scholar
  2. Alcalai R, Metzger S, Rosenheck S, Meiner V, Chajek-Shaul T (2003) A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 42:319–327PubMedCrossRefGoogle Scholar
  3. Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95:459–470PubMedCrossRefGoogle Scholar
  4. Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A (1998) Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284PubMedCrossRefGoogle Scholar
  5. Bairati A, DeBiasi S (1981) Presence of a smooth muscle system in aortic valve leaflets. Anat Embryol (Berl) 161:329–340CrossRefGoogle Scholar
  6. Balachandran K, Alford PW, Wylie-Sears J, Goss JA, Grosberg A, Bischoff J, Aikawa E, Levine RA, Parker KK (2011) Cyclic strain induces dual-mode endothelial–mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci USA 108:19943–19948PubMedCrossRefGoogle Scholar
  7. Barth M (2011) The cell and molecular biological characterization of cell–cell junctions in mammalian heart valves. Faculty of Biology. University of Heidelberg, Heidelberg, Germany, pp 1–161Google Scholar
  8. Barth M, Schumacher H, Kuhn C, Akhyari P, Lichtenberg A, Franke WW (2009) Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res 337:63–77PubMedCrossRefGoogle Scholar
  9. Bass-Zubek AE, Godsel LM, Delmar M, Green KJ (2009) Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr Opin Cell Biol 21:708–716PubMedCrossRefGoogle Scholar
  10. Bertipaglia B, Ortolani F, Petrelli L, Gerosa G, Spina M, Pauletto P, Casarotto D, Marchini M, Sartore S (2003) Cell characterization of porcine aortic valve and decellularized leaflets repopulated with aortic valve interstitial cells: the VESALIO Project (Vitalitate Exornatum Succedaneum Aorticum Labore Ingenioso Obtenibitur). Ann Thorac Surg 75:1274–1282PubMedCrossRefGoogle Scholar
  11. Bischoff J, Aikawa E (2011) Progenitor cells confer plasticity to cardiac valve endothelium. J Cardiovasc Transl Res 4:710–719PubMedCrossRefGoogle Scholar
  12. Blevins TL, Carroll JL, Raza AM, Grande-Allen KJ (2006) Phenotypic characterization of isolated valvular interstitial cell subpopulations. J Heart Valve Dis 15:815–822PubMedGoogle Scholar
  13. Blevins TL, Peterson SB, Lee EL, Bailey AM, Frederick JD, Huynh TN, Gupta V, Grande-Allen KJ (2007) Mitral valvular interstitial cells demonstrate regional, adhesional, and synthetic heterogeneity. Cells Tissues Organs 187:113–122PubMedCrossRefGoogle Scholar
  14. Boda-Heggemann J, Regnier-Vigouroux A, Franke WW (2009) Beyond vessels: occurrence and regional clustering of vascular endothelial (VE-)cadherin-containing junctions in non-endothelial cells. Cell Tissue Res 335:49–65PubMedCrossRefGoogle Scholar
  15. Borrmann CM (2002) Molekulare Charakterisierung der Adhaerens-Zellverbindungen des Herzens: Identifizierung einer neuen Art, der Area Composita. Faculty of Biology. University of Heidelberg, Heidelberg, Germany, pp 1–119Google Scholar
  16. Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 85:469–485PubMedCrossRefGoogle Scholar
  17. Brand NJ, Roy A, Hoare G, Chester A, Yacoub MH (2006) Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers. Int J Biochem Cell Biol 38:30–42PubMedCrossRefGoogle Scholar
  18. Brody S, Anilkumar T, Liliensiek S, Last JA, Murphy CJ, Pandit A (2006) Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. Tissue Eng 12:413–421PubMedCrossRefGoogle Scholar
  19. Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H, Nerem RM (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26:69–77PubMedCrossRefGoogle Scholar
  20. Butcher JT, Mahler GJ, Hockaday LA (2011) Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev 63:242–268PubMedCrossRefGoogle Scholar
  21. Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A, Kleczka C, Ciubotaru A, Haverich A (2002) Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 106:I63–I68PubMedGoogle Scholar
  22. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–I137PubMedCrossRefGoogle Scholar
  23. Chester AH, Taylor PM (2007) Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc Lond B Biol Sci 362:1437–1443PubMedCrossRefGoogle Scholar
  24. Cimini M, Rogers KA, Boughner DR (2003) Smoothelin-positive cells in human and porcine semilunar valves. Histochem Cell Biol 120:307–317PubMedCrossRefGoogle Scholar
  25. Colazzo F, Chester AH, Taylor PM, Yacoub MH (2010) Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J Heart Valve Dis 19:736–744PubMedGoogle Scholar
  26. Combs MD, Yutzey KE (2009) Heart valve development: regulatory networks in development and disease. Circ Res 105:408–421PubMedCrossRefGoogle Scholar
  27. de Lange FJ, Moorman AF, Anderson RH, Manner J, Soufan AT, de Gier-de VC, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM (2004) Lineage and morphogenetic analysis of the cardiac valves. Circ Res 95:645–654PubMedCrossRefGoogle Scholar
  28. Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM (2009) Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335:17–25PubMedCrossRefGoogle Scholar
  29. Delmar M, McKenna WJ (2010) The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 107:700–714PubMedCrossRefGoogle Scholar
  30. Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6PubMedGoogle Scholar
  31. Filip DA, Radu A, Simionescu M (1986) Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res 59:310–320PubMedGoogle Scholar
  32. Franke WW, Cowin P, Grund C, Kuhn C, Kapprell H (1988) The endothelial junction. The plaque and its components. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum Press, New York, pp 147–166CrossRefGoogle Scholar
  33. Franke WW, Borrmann CM, Grund C, Pieperhoff S (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85:69–82PubMedCrossRefGoogle Scholar
  34. Franke WW, Rickelt S, Barth M, Pieperhoff S (2009) The junctions that don't fit the scheme: special symmetrical cell–cell junctions of their own kind. Cell Tissue Res 338:1–17PubMedCrossRefGoogle Scholar
  35. Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Drenckhahn J, Michely B, Sasse-Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze-Bahr E, Thierfelder L (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36:1162–1164PubMedCrossRefGoogle Scholar
  36. Gitler AD, Lu MM, Jiang YQ, Epstein JA, Gruber PJ (2003) Molecular markers of cardiac endocardial cushion development. Dev Dyn 228:643–650PubMedCrossRefGoogle Scholar
  37. Gould RA, Butcher JT (2010) Isolation of valvular endothelial cells. J Vis Exp 46:pii:2158Google Scholar
  38. Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167:149–160PubMedCrossRefGoogle Scholar
  39. Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46PubMedCrossRefGoogle Scholar
  40. Hoerstrup SP, Zund G, Lachat M, Schoeberlein A, Uhlschmid G, Vogt P, Turina M (1998) Tissue engineering: a new approach in cardiovascular surgery—seeding of human fibroblasts on resorbable mesh. Swiss Surg Suppl 2:23–25Google Scholar
  41. Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–III49PubMedGoogle Scholar
  42. Hurlstone AF, Haramis AP, Wienholds E, Begthel H, Korving J, Van Eeden F, Cuppen E, Zivkovic D, Plasterk RH, Clevers H (2003) The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425:633–637PubMedCrossRefGoogle Scholar
  43. Icardo JM, Colvee E (1995a) Atrioventricular valves of the mouse: II. Light and transmission electron microscopy. Anat Rec 241:391–400PubMedCrossRefGoogle Scholar
  44. Icardo JM, Colvee E (1995b) Atrioventricular valves of the mouse: III. Collagenous skeleton and myotendinous junction. Anat Rec 243:367–375PubMedCrossRefGoogle Scholar
  45. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386PubMedCrossRefGoogle Scholar
  46. Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, Yacoub MH, Chester AH (2006) Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71:548–556PubMedCrossRefGoogle Scholar
  47. Kuehnel W (1966a) Electron microscopic studies on the variable structure of the heart valves. I. Mitral and aortic valves. Z Zellforsch Mikrosk Anat 69:452–473CrossRefGoogle Scholar
  48. Kuehnel W (1966b) Electronmicroscopic studies on the different structure of heart valves. II. Tricuspid and pulmonary valve. Z Zellforsch Mikrosk Anat 72:462–474CrossRefGoogle Scholar
  49. Latif N, Sarathchandra P, Taylor PM, Antoniw J, Yacoub MH (2005a) Localization and pattern of expression of extracellular matrix components in human heart valves. J Heart Valve Dis 14:218–227PubMedGoogle Scholar
  50. Latif N, Sarathchandra P, Taylor PM, Antoniw J, Yacoub MH (2005b) Molecules mediating cell–ECM and cell–cell communication in human heart valves. Cell Biochem Biophys 43:275–287PubMedCrossRefGoogle Scholar
  51. Latif N, Sarathchandra P, Taylor PM, Antoniw J, Brand N, Yacoub MH (2006) Characterization of molecules mediating cell–cell communication in human cardiac valve interstitial cells. Cell Biochem Biophys 45:255–264PubMedCrossRefGoogle Scholar
  52. Latif N, Sarathchandra P, Thomas PS, Antoniw J, Batten P, Chester AH, Taylor PM, Yacoub MH (2007) Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis 16:56–66PubMedGoogle Scholar
  53. Lester W, Rosenthal A, Granton B, Gotlieb AI (1988) Porcine mitral valve interstitial cells in culture. Lab Invest 59:710–719PubMedGoogle Scholar
  54. Lester WM, Damji AA, Tanaka M, Gedeon I (1992) Bovine mitral valve organ culture: role of interstitial cells in repair of valvular injury. J Mol Cell Cardiol 24:43–53PubMedCrossRefGoogle Scholar
  55. Lichtenberg A, Breymann T, Cebotari S, Haverich A (2006a) Cell seeded tissue engineered cardiac valves based on allograft and xenograft scaffolds. Prog Pediatr Cardiol 21:211–217CrossRefGoogle Scholar
  56. Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, Hurscheler C, Brandes G, Hilfiker A, Haverich A (2006b) In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27:4221–4229PubMedCrossRefGoogle Scholar
  57. Lichtenberg A, Tudorache I, Cebotari S, Suprunov M, Tudorache G, Goerler H, Park JK, Hilfiker-Kleiner D, Ringes-Lichtenberg S, Karck M, Brandes G, Hilfiker A, Haverich A (2006c) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114:I559–I565PubMedCrossRefGoogle Scholar
  58. Lie JT (1989) The identity and histogenesis of cardiac myxomas. A controversy put to rest. Arch Pathol Lab Med 113:724–726PubMedGoogle Scholar
  59. Liu AC, Gotlieb AI (2007) Characterization of cell motility in single heart valve interstitial cells in vitro. Histol Histopathol 22:873–882PubMedGoogle Scholar
  60. Liu AC, Joag VR, Gotlieb AI (2007) The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol 171:1407–1418PubMedCrossRefGoogle Scholar
  61. Markwald RR, Fitzharris TP, Manasek FJ (1977) Structural development of endocardial cushions. Am J Anat 148:85–119PubMedCrossRefGoogle Scholar
  62. Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34:1799–1819PubMedCrossRefGoogle Scholar
  63. Mertens C, Kuhn C, Franke WW (1996) Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol 135:1009–1025PubMedCrossRefGoogle Scholar
  64. Mertens C, Kuhn C, Moll R, Schwetlick I, Franke WW (1999) Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues. Differentiation 64:277–290PubMedCrossRefGoogle Scholar
  65. Messier RH Jr, Bass BL, Aly HM, Jones JL, Domkowski PW, Wallace RB, Hopkins RA (1994) Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res 57:1–21PubMedCrossRefGoogle Scholar
  66. Moll R, Holzhausen HJ, Mennel HD, Kuhn C, Baumann R, Taege C, Franke WW (2006) The cardiac isoform of alpha-actin in regenerating and atrophic skeletal muscle, myopathies and rhabdomyomatous tumors: an immunohistochemical study using monoclonal antibodies. Virchows Arch 449:175–191PubMedCrossRefGoogle Scholar
  67. Moll R, Sievers E, Haemmerling B, Schmidt A, Barth M, Kuhn C, Grund C, Hofmann I, Franke WW (2009) Endothelial and virgultar cell formations in the mammalian lymph node sinus: endothelial differentiation morphotypes characterized by a special kind of junction (complexus adhaerens). Cell Tissue Res 335:109–141PubMedCrossRefGoogle Scholar
  68. Mulholland DL, Gotlieb AI (1996) Cell biology of valvular interstitial cells. Can J Cardiol 12:231–236PubMedGoogle Scholar
  69. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9:2761–2766PubMedCrossRefGoogle Scholar
  70. O'Brien MF, Goldstein S, Walsh S, Black KS, Elkins R, Clarke D (1999) The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg 11:194–200PubMedGoogle Scholar
  71. Orlandi A, Ciucci A, Ferlosio A, Genta R, Spagnoli LG, Gabbiani G (2006) Cardiac myxoma cells exhibit embryonic endocardial stem cell features. J Pathol 209:231–239PubMedCrossRefGoogle Scholar
  72. Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J (2006) Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ Res 99:861–869PubMedCrossRefGoogle Scholar
  73. Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335PubMedCrossRefGoogle Scholar
  74. Pho M, Lee W, Watt DR, Laschinger C, Simmons CA, McCulloch CA (2008) Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol 294:H1767–H1778PubMedCrossRefGoogle Scholar
  75. Pieperhoff S, Franke WW (2008) The area composita of adhering junctions connecting heart muscle cells of vertebrates. VI. Different precursor structures in non-mammalian species. Eur J Cell Biol 87:413–430PubMedCrossRefGoogle Scholar
  76. Pieperhoff S, Schumacher H, Franke WW (2008) The area composita of adhering junctions connecting heart muscle cells of vertebrates. V. The importance of plakophilin-2 demonstrated by small interference RNA-mediated knockdown in cultured rat cardiomyocytes. Eur J Cell Biol 87:399–411PubMedCrossRefGoogle Scholar
  77. Pieperhoff S, Barth M, Rickelt S, Franke WW (2010) Desmosomal molecules in and out of adhering junctions: normal and diseased states of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010 (Article 139167)Google Scholar
  78. Pieperhoff S, Rickelt S, Heid H, Claycomb WC, Zimbelmann R, Kuhn C, Winter-Simanowski S, Frey N, Franke WW (2011) The plaque protein myozap identified as a novel major component of adhering junctions in endothelia of the blood and the lymph vascular systems. J Cell Mol Med Oct 13 [Epub ahead of print]Google Scholar
  79. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278PubMedCrossRefGoogle Scholar
  80. Posner BI, Laporte SA (2010) Cellular signalling: Peptide hormones and growth factors. Prog Brain Res 181:1–16PubMedCrossRefGoogle Scholar
  81. Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, Zimbello R, Simionati B, Basso C, Thiene G, Towbin JA, Danieli GA (2002) Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 71:1200–1206PubMedCrossRefGoogle Scholar
  82. Rickelt S, Winter-Simanowski S, Noffz E, Kuhn C, Franke WW (2009) Upregulation of plakophilin-2 and its acquisition to adherens junctions identifies a novel molecular ensemble of cell–cell-attachment characteristic for transformed mesenchymal cells. Int J Cancer 125:2036–2048PubMedCrossRefGoogle Scholar
  83. Rickelt S, Rizzo S, Doerflinger Y, Zentgraf H, Basso C, Gerosa G, Thiene G, Moll R, Franke WW (2010) A novel kind of tumor type-characteristic junction: plakophilin-2 as a major protein of adherens junctions in cardiac myxomata. Mod Pathol 23:1429–1437PubMedCrossRefGoogle Scholar
  84. Rickelt S, Moll I, Franke WW (2011) Intercellular adhering junctions with an asymmetric molecular composition: desmosomes connecting Merkel cells and keratinocytes. Cell Tissue Res 346:65–77PubMedCrossRefGoogle Scholar
  85. Sales VL, Mettler BA, Engelmayr GC Jr, Aikawa E, Bischoff J, Martin DP, Exarhopoulos A, Moses MA, Schoen FJ, Sacks MS, Mayer JE Jr (2010) Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng Part A 16:257–267PubMedCrossRefGoogle Scholar
  86. Schenke-Layland K, Riemann I, Opitz F, Konig K, Halbhuber KJ, Stock UA (2004) Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol 23:113–125PubMedCrossRefGoogle Scholar
  87. Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118:1864–1880PubMedCrossRefGoogle Scholar
  88. Schroeder JA, Jackson LF, Lee DC, Camenisch TD (2003) Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med 81:392–403PubMedCrossRefGoogle Scholar
  89. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60:S513–S516PubMedCrossRefGoogle Scholar
  90. Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006, discussion 1006PubMedCrossRefGoogle Scholar
  91. Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, Kim BS, Schoen FJ, Vacanti JP, Mayer JE Jr (2000a) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:III22–III29PubMedGoogle Scholar
  92. Sodian R, Hoerstrup SP, Sperling JS, Daebritz SH, Martin DP, Schoen FJ, Vacanti JP, Mayer JE Jr (2000b) Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 70:140–144PubMedCrossRefGoogle Scholar
  93. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105:1164–1176PubMedCrossRefGoogle Scholar
  94. Taylor PM, Allen SP, Dreger SA, Yacoub MH (2002) Human cardiac valve interstitial cells in collagen sponge: a biological three-dimensional matrix for tissue engineering. J Heart Valve Dis 11:298–306, discussion 306-297PubMedGoogle Scholar
  95. Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH (2003) The cardiac valve interstitial cell. Int J Biochem Cell Biol 35:113–118PubMedCrossRefGoogle Scholar
  96. Trinh LA, Stainier DY (2004) Cardiac development. Methods Cell Biol 76:455–473PubMedCrossRefGoogle Scholar
  97. van Tintelen JP, Entius MM, Bhuiyan ZA, Jongbloed R, Wiesfeld AC, Wilde AA, van der Smagt J, Boven LG, Mannens MM, van Langen IM, Hofstra RM, Otterspoor LC, Doevendans PA, Rodriguez LM, van Gelder IC, Hauer RN (2006) Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 113:1650–1658PubMedCrossRefGoogle Scholar
  98. Visconti RP, Ebihara Y, LaRue AC, Fleming PA, McQuinn TC, Masuya M, Minamiguchi H, Markwald RR, Ogawa M, Drake CJ (2006) An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ Res 98:690–696PubMedCrossRefGoogle Scholar
  99. Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW (2007) Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328:499–514PubMedCrossRefGoogle Scholar
  100. Yperman J, De Visscher G, Holvoet P, Flameng W (2004) Molecular and functional characterization of ovine cardiac valve-derived interstitial cells in primary isolates and cultures. Tissue Eng 10:1368–1375PubMedGoogle Scholar
  101. Zund G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M (1998) Tissue engineering: a new approach in cardiovascular surgery: Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg 13:160–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mareike Barth
    • 1
    • 2
  • Steffen Rickelt
    • 1
    • 3
  • Edeltraut Noffz
    • 1
  • Stefanie Winter-Simanowski
    • 1
  • Heiner Niemann
    • 4
  • Payam Akhyari
    • 5
  • Artur Lichtenberg
    • 5
  • Werner Wilhelm Franke
    • 1
    • 3
    Email author
  1. 1.Helmholtz Group for Cell BiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Institute for Pharmacology and Clinical Pharmacology / Department of Cardiovascular Surgery - Experimental SurgeryUniversity Hospital DuesseldorfDuesseldorfGermany
  3. 3.Progen BiotechnikHeidelbergGermany
  4. 4.Institute of Farm Animal Genetics; Friedrich-Loeffler-InstituteNeustadt am RuebenbergeGermany
  5. 5.Department of Cardiovascular Surgery and Institute for Experimental SurgeryDuesseldorf University HospitalDuesseldorfGermany

Personalised recommendations